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We study both experimentally and numerically the steady zonal flow generated
by longitudinal librations of a spherical rotating container. This study follows
the recent weakly nonlinear analysis of Busse (J. Fluid Mech., vol. 650, 2010,
pp. 505–512), developed in the limit of small libration frequency–rotation rate ratio
and large libration frequency–spin-up time product. Using particle image velocimetry
measurements as well as results from axisymmetric numerical simulations, we confirm
quantitatively the main features of Busse’s analytical solution: the zonal flow takes the
form of a retrograde solid-body rotation in the fluid interior, which does not depend
on the libration frequency nor on the Ekman number, and which varies as the square
of the amplitude of excitation. We also report the presence of an unpredicted prograde
flow at the equator near the outer wall.
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1. Introduction
Longitudinal librations (referred to hereafter as librations) are periodic oscillations

of a rotating container about its axis of rotation. Despite the fact that these oscillations
are time dependent, it has been recently suggested that they can generate nonlinearly
a steady axisymmetric flow in the liquid interior through the Ekman boundary
layer (Busse 2010). A better knowledge of this resulting flow is of great interest in
geophysics and astrophysics (see for instance Noir et al. 2009) where libration is
driven by gravitational interactions and is used to investigate the interior structure of
planets (e.g. Margot et al. 2007; Van Hoolst et al. 2008).

In spite of the possible applications, flows driven by libration in rotating containers
have not been much studied. Aldridge & Toomre (1969) have observed experimentally
that inertial modes can be excited by libration at particular resonance frequencies,
which has been confirmed numerically by Rieutord (1991). However, in the case of
Aldridge & Toomre (1969), the experimental results are measurements of pressure
differences between two points on the axis of rotation, and do not provide information
about the resulting flow created in the interior. Tilgner (1999) has investigated
numerically the linear response to the forcing in the case of a spherical shell and
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has shown that the presence of an inner core only marginally modifies the resonance
frequencies. More recently, Noir et al. (2009) have studied experimentally by direct
flow visualization the presence of centrifugal instabilities in the form of Taylor–
Görtler vortices near the outer boundary, by varying the frequency and the amplitude
of libration. The same group has also performed laser Doppler velocimetry (LDV)
measurements of libration-driven zonal flows in a librating cylinder (Noir et al. 2010)
in the case of high-frequency librations and axisymmetric simulations in a spherical
shell (Calkins et al. 2010). Finally, a complete weakly nonlinear theory of the zonal
flow driven by low-frequency librations in a sphere has been recently developed by
Busse (2010) in the absence of direct resonant forcing of any inertial waves. To
our knowledge, the main features of this analytical solution have not been so far
validated quantitatively. This is the aim of the present work, combining experimental
and numerical approaches. This paper is organized as follows. Section 2 gives a brief
summary of the governing equations and the weakly nonlinear analysis of Busse
(2010). In § 3, we present the experimental set-up and the numerical model used in
this study. Then, experimental and numerical results are compared with the theory in
§ 4. Discussion and conclusion are given in § 5.

2. Weakly nonlinear theory
Let us consider a spherical cavity of radius R filled with a homogeneous and

incompressible fluid of kinematic viscosity ν. In the inertial frame, the cavity rotates
with an angular velocity

Ω(t) =

(
Ω0 +

�Ω

2
cos(ωlib t)

)
k, (2.1)

where Ω0 is the mean rotation rate, �Ω the amplitude of libration, ωlib the libration
frequency and k is the unit vector in the direction of the rotation axis. Using R and
Ω0

−1 as the length scale and time scale, respectively, the dimensionless equations of
motion written in the frame rotating at the angular velocity Ω0 and the sidewall
boundary conditions are given by

∂u
∂t

+ u · ∇u + 2 k × u = −∇p + E∇2u, (2.2a)

∇ · u = 0, (2.2b)

u = ε k × r cos(ω t) at |r| = 1, (2.2c)

where r is the spherical radial coordinate, u is the velocity measured in the rotating
frame, p is the modified pressure taking into account centrifugal forces, E = ν/Ω0R

2

is the Ekman number, ε = �Ω/2Ω0 is the normalized amplitude of libration and
ω =ωlib/Ω0 is the normalized librational frequency. The librational forcing appears in
the problem through the boundary condition (2.2c). This problem has been recently
solved by Busse (2010) in the limit:

√
E � ω � ε � 1. (2.3)

The limit of small Ekman number allows splitting of the velocity field into two
parts: a component U describing the inviscid flow in the interior and a boundary
layer component u. Following the weakly nonlinear method previously used in the
case of precession (Busse 1968) and tidal forcing (Suess 1971), Busse (2010) finds an
expression for the steady zonal flow in the inviscid interior Ū in the limit of low
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Figure 1. (a) Photograph and (b) sketch of the experimental set-up.

libration frequencies

Ū = ε2 k × r f (|k × r |2), (2.4a)

where

f (x2) =
259 x2 − 360

2400(1 − x2)
. (2.4b)

The function f (x2) represents the average difference in angular velocities between
the container and the fluid divided by ε2. For 0 � r � 1, f (x2) is negative, i.e. the fluid
is expected to rotate in the retrograde direction. Moreover, this differential rotation
is nearly constant up to r ∼ 0.6 with a mean value of −0.154. The zonal flow can
thus be assimilated in the bulk to a retrograde solid-body rotation superimposed on
the mean rotation, whose amplitude is independent of the libration frequency and the
Ekman number and changes as −0.154 ε2. In this paper, we verify experimentally and
numerically these main features. Note that (2.4b) diverges for x = 1, i.e. near the outer
boundary at the equator. Here, the analytical approach requires the introduction of a
specific scaling due to the singularity of the Ekman boundary layer (Busse 2010).

3. Methods
3.1. Experimental set-up

Figure 1 shows a photograph and a schematic view of the experimental set-up used
in this study, which is the same as that used by Morize et al. (2010) to study zonal
flows driven by tides. It consists of a hollow sphere, of radius R = 10 cm, which
was moulded in a transparent silicone gel to allow flow visualization. The sphere
is filled with water and seeded with Optimage particles of 100 µm in diameter and
of density 1 g cm−3 ± 2 %. The sphere is set in rotation about its vertical axis (Oz)
with a mean angular velocity Ω0 up to 85 r.p.m. with a precision of ±0.3 %. Once a
solid-body rotation is reached (typically in ∼10 min), a librational motion is set using
sinusoidal oscillations of the angular velocity of the sphere of the form ε cos(ωlib t),
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where ωlib can be chosen between 0.6 and 120 r.p.m. with a precision of ±0.3 %.
In terms of dimensionless numbers, we have explored the following ranges: the
Ekman number E = ν/Ω0R

2 ∈ [10−5; 10−4], the ratio between the libration and the
spin frequency ω = ωlib/Ω0 ∈ [0.04; 0.1] and the amplitude of libration ε ∈ [0.02; 0.15]
with a precision of ±0.6 %.

In order to measure the velocity field in the equatorial plane induced by librational
forcing, we used a rotating particle image velocimetry (PIV) system. A miniature
wireless camera, 1/4′ Sharp HighQ CCD 29.4 × 22 mm of resolution 576 × 768 pixels,
rotates at a constant angular velocity Ω0 and measurements are made from above
through the transparent top surface. The PIV particles are illuminated by a laser
sheet of thickness 3 mm produced by a continuous laser (4 W) in the equatorial
plane. After turning on the libration forcing, we wait for about 20 oscillations to
ensure that the response of the fluid is well established; then we start acquiring
pictures of PIV measurements using a video transmitter–receptor system. Velocity
fields are computed using DPIVSoft (Meunier & Leweke 2003) on a 60 × 80 grid
with a spatial resolution of 3 mm, close to the laser sheet thickness. We look for
the time-independent axisymmetric zonal flow induced by the libration whereas the
forcing of the sphere is of the form ε cos(ωt). Velocity fields are thus time-averaged
over several periods of libration in order to eliminate the time-dependent term. This
also significantly enhances the signal-to-noise ratio. However, our experimental set-
up only allows collection of PIV data for a limited time. Hence, we cannot set the
libration frequency at too low a value because we would not be able to average
out the resulting data over enough periods to have a correct velocity profile. In the
experiments, we have considered frequencies in the range 0.04 � ω � 0.1. Higher and
lower libration frequencies have been studied using numerical methods, decribed in
the following section.

3.2. Numerical approach

In addition to the experiments, we have performed axisymmetric numerical
simulations of the flow within a sphere of radius R in rotation with an angular velocity
Ω(t) = Ω0(1 + ε cos(ωt))ez. We use a commercial software, Comsol Multyphisics c©,
based on the finite elements method to solve this problem. The numerical grid consists
of two domains: (i) a boundary layer domain of thickness 0.035 R all along the outer
boundary and the axisymmetric axis, which is discretized in the direction normal to
the boundary into 25 quadrilateral elements with an initial thickness of 5×10−5 R and
a stretching factor of 1.2; (ii) a bulk zone with triangular elements. All elements are
of standard Lagrange P1–P2 type (i.e. linear for the pressure field and quadratic for
the velocity field). Note that the finite element method does not induce any particular
problem around r =0 and that no stabilization technique has been used in this work.
The temporal solver is IDA (Hindmarsh et al. 2005), based on backward differencing
formulae. At each time step the system is solved with the sparse direct linear solver
PARDISO (www.pardiso-project.org). The number of degrees of freedom (DoF) used
in the simulations is constant and equal to 157 869 DoF. Our numerical model solves
the Navier–Stokes equations in the frame rotating at the velocity Ω0 ez, with no-
slip boundary conditions and a fluid initially at rest in this frame (i.e. a solid-body
rotation at Ω0 in the inertial frame). At time t = 0, libration of the outer boundary is
turned on and computations are pursued until a stationary state is obtained, which
is reached typically in less than 10 libration periods. The velocity is then averaged
in time over five libration periods to obtain the steady zonal flow. Results are non-
dimensionalized as in the experiment and the theory. The numerical model has been
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Figure 2. (a) Time-averaged crest-to-trough amplitude of the pressure difference Cp between
the centre and the pole of the sphere for various frequency ratios ω =ωlib/Ω0 and for a libration
forcing Ω0+ ε̃ ωlib cos(ωlib t) with ε̃ = 8.0 π/180 rad and Reω = ωlibR

2/ν = 6.2×104. The squares
represent our numerical values, the circles represent experimental values of Aldridge & Toomre
(1969) and the line represents the theoretical plot. (b) Velocity in the z-direction (i.e. in the
direction of the rotation axis) at time ωt = 3π/2 [2π] for the mode (2, 1) in the notation of
Aldridge & Toomre (1969), corresponding to 1/ω = 1.066.

validated in reproducing the experimental results of Aldridge & Toomre (1969). In
their paper, they define a fixed libration Reynolds number Reω = ωlibR

2/ν = 6.2 × 104

and their applied angular velocity is given by

Ω(t) = Ω0 + ε̃ ωlib cos(ωlib t), (3.1)

where ε̃ = 8.0 π/180 rad.
Pressure measurements from our numerical simulation when systematically

changing the libration frequency ω are presented in figure 2(a) and show an
excellent agreement with the experimental results of Aldridge & Toomre (1969)
and the numerical results of Rieutord (1991), which validates the numerical model. In
figure 2(a), each peak corresponds to the resonant forcing of a given inertial mode
of the rotating sphere and is labelled by two integers (n, m) (see Aldridge & Toomre
1969). There is no inertial mode for |ω| � 2 and the modes are progressively damped
when 1/ω increases due to the reduced coupling between the container’s oscillation
and the fluid interior as well as due to the increased viscous damping as the structure
of the forced modes becomes more complex. The velocity in the z-direction for the
mode (2, 1) in the notation of Aldridge & Toomre (1969) is presented in figure 2(b)
and shows the inertial wave excited by libration forcing as well as the structure of
the outer boundary layer. In the next section, following Busse (2010), we investigate
the limit ω � 1 where the forcing of inertial modes is negligible, but where a global
zonal flow is excited.

4. Results
Figure 3(a) shows an example of the velocity field obtained by PIV measurement

in the equatorial plane. The stationary flow is azimuthal and axisymmetric. Besides,
as the system rotation is clockwise, the zonal flow corresponds here to a retrograde
circulation opposed to the rotation of the sphere. From this velocity field we can
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Figure 3. (a) Time-averaged velocity field obtained by the PIV measurement in the equatorial
plane for E =1.15 × 10−5, ε = 0.08 and ω = 0.1. The background is shaded as the norm of the
horizontal velocity. The centre of the sphere is at (0, 0). (b) Mean experimental dimensionless
azimuthal velocity (squares) corresponding to the velocity field of figure 3(a) and comparison
with the theoretical results of Busse (2010) (dash-dotted line).
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Figure 4. Dimensionless time-averaged velocity profiles obtained by numerical simulation in
the equatorial plane with E = 5 × 10−5, ε = 0.2 and ω = 0.03 (dashed line), ω =0.06 (dotted
line) and ω = 0.1 (dash-dotted line), compared with the inviscid analytical solution of Busse
(2010) (solid line).

plot an averaged azimuthal velocity profile at the equator for given parameters in
terms of dimensionless quantities as a function of the radial distance (figure 3b).
Experimentally, because of optical deformation induced by the planar air–silicone
and spheroidal silicone–water interfaces, it is not possible to measure the profile
for r > 0.85. We observe the steady zonal flow visible in figure 3(a). Moreover, we
can directly compare this dimensionless quantity with the analytical solution given by
Busse (2010) and we observe an excellent agreement up to r ∼ 0.6 with no adjustment
parameter. An example of the velocity field obtained numerically is shown in figure 4,
which also exhibits good agreement with the analytical solution in the bulk. For
r � 0.6, a deviation in the prograde direction with respect to the theoretical profile
due to the librating outer boundary is observed and is discussed below. But for now,
we concentrate on the mean zonal flow induced in the bulk.

We have performed series of experiments and numerical calculations to
systematically check the effect of the three control parameters E, ε and ω on this bulk
zonal flow. To do so, we define a reproducible method to synthetize the experimental
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Figure 5. Dimensionless average amplitude of |Ū |/r between r = 0.1 and r = 0.6 as a function
of the amplitude ε. Experimental results (bars) for E = 2.3 × 10−5, ω =0.07, and numerical
results (squares) for E =4 × 10−5, ω =0.04, are compared with the theoretical value of Busse
(2010) (dash-dotted line).

and numerical data. Since the function f (x2) (2.4b) may be considered as constant up
to r ∼ 0.6, which means that the predicted zonal flow is almost a solid-body rotation
up to r ∼ 0.6, we take the average value of the measured |Ū |/r between r =0.1 and
r = 0.6, i.e. the non-dimensionalized mean angular velocity, and compare it with the
theoretical value 0.154ε2. Note that experimental results are represented by bars (see
for example figure 5) which represent both the uncertainties of the PIV measurements
and the deviation of the measured velocity profile from a pure solid-body rotation.

In figure 5 we investigate the influence of the amplitude of libration ε on the
zonal flow. Experimentally, we set E = 2.3 × 10−5, ω = 0.07 and systematically change
ε between 0.02 and 0.15. To explore a larger range of amplitude we have also
performed numerical simulations with E = 4×10−5, ω = 0.04 and ε ∈ [0.01; 0.2]. Both
experimental and numerical results are quantitatively compatible with the theory with
no adjustment parameter. The steady azimuthal velocity scales as ε2 for a large range
of ε. When ε becomes larger than 0.2, the weakly nonlinear hypothesis cannot be
used anymore because terms of higher order cannot be neglected. We also notice that
even in a range of values where the condition ω � ε in (2.3) is not fully satisfied,
the zonal wind intensity still scales as ε2. In fact, rather than the more restrictive
condition (2.3), we only require that (i) E � 1 to decouple the bulk and boundary
layer flows, (ii)

√
E � ω � 1 in order to neglect the excitation of inertial waves

(Aldridge & Toomre 1969) and to ensure that the spin-up effect of the libration is
confined inside the outer boundary layer, and (iii) ε � 1 to remain in the weakly
nonlinear regime.

In figure 6 we report systematic study of the influence of the Ekman number on
the zonal flow. Experimental results are compatible with the no-Ekman dependence
predicted by Busse (2010) in a large range of Ekman numbers with no adjustment
parameter. This is confirmed numerically up to E ∼ 10−3. For larger values of the
Ekman number, the condition (2.3) is not fulfilled and we cannot assume that the
effect of spin-up is negligible in the bulk. We have also noticed numerically that
further decreasing E for a given ω = 0.1 (which is not so small) leads to a deviation
from the theory. Indeed, forced inertial modes are not expected to be negligible
anymore and can perturb the zonal flow. In particular, nonlinear self-interaction of
these forced modes can drive localized zonal winds (e.g. Morize et al. 2010). This
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function of the Ekman number. Bars are experimental results for ε = 0.08 and ω = 0.1
and squares are numerical results for ε = 0.2 and ω = 0.06. The dash-dotted line shows the
theoretical result of Busse (2010). The velocity profiles have been rescaled by ε2 following
the results presented in figure 5. Experimentally, error bars increase with the Ekman number
mainly because our experimental set-up does not allow us to average the velocity on a sufficient
number of periods when increasing E.
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Figure 7. (a) Dimensionless average amplitude of |Ū |/rε2 between r = 0.1 and r = 0.6 as a
function of the frequency of libration ω; squares are numerical values (E = 5 × 10−5, ε = 0.2)
and bars are experimental data (E = 1.5 × 10−5, ε = 0.1). The dash-dotted line shows the
theoretical result of Busse (2010). The velocity profiles have been rescaled by ε2 following
the results presented in figure 5. (b) Distance of the minimum of the velocity profile from the
outer boundary as a function of ω obtained by numerical simulation for E = 5 × 10−5, ε = 0.2.
The dotted line scales as 1/

√
ω, which is representative of a skin effect.

peculiar behaviour appears outside the asymptotic limit (2.3) under consideration
here and will be the subject of a future study.

Figure 7(a) shows that the amplitude of the zonal wind in the bulk does not depend
on ω, as suggested by Busse (2010). Nevertheless, as seen in figure 4, the flow near
the outer wall changes with ω. We expect this prograde flow to be related to the
same mechanism of boundary layer ejection near the critical latitude as the prograde
jets described by Noir et al. (2009). To quantify the distance at which the real flow
deviates from the analytical solution, we identify the value rmin where the velocity has
a minimum. The thickness of the layer where the prograde flow develops is shown
in figure 7(b) and is found to scale as 1/

√
ω, which is representative of a skin effect.
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Therefore, if ω becomes too small at a fixed E, the layer where the effects of external
walls are important is visible in the bulk and perturbs the zonal flow.

5. Conclusion
In this paper, combining numerical and experimental studies, we report the first

quantitative measurements of the steady flow driven by longitudinal librations in a
rotating sphere. This approach confirms the main features of the weakly nonlinear
theory of Busse (2010): a retrograde differential rotation induced by the libration of
the sphere takes place, which may be assimilated to a solid-body rotation for r < 0.6.
It is also shown that the amplitude of this steady zonal flow is independent of ω and
E and scales as ε2. Note that the same features have been observed experimentally
in a librating cylinder (Noir et al. 2010) and numerically in a librating spherical shell
(Calkins et al. 2010) and thus appear to be generic of librating flows.

The main differences between our results and the theoretical profile of Busse (2010)
arise close to the outer boundary at the equator. There we observe a prograde flow in
a layer of thickness proportional to 1/

√
ω. The analytical resolution of this peculiar

feature would necessitate a special treatment since it appears at the critical latitude
of the outer boundary layer (Busse 2010). This as well as the experimental study of a
librating spherical shell will be the subject of forthcoming studies.
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