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Orbital dynamics that lead to longitudinal libration of celestial bodies also result in an elliptically
deformed equatorial core–mantle boundary. The non-axisymmetry of the boundary leads to a topo-
graphic coupling between the assumed rigid mantle and the underlying low viscosity fluid. The present
experimental study investigates the effect of non axisymmetric boundaries on the zonal flow driven by
longitudinal libration. For large enough equatorial ellipticity, we report intermittent space-filling turbu-
lence in particular bands of resonant frequency correlated with larger amplitude zonal flow. The mech-
anism underlying the intermittent turbulence has yet to be unambiguously determined. Nevertheless,
recent numerical simulations in triaxial and biaxial ellipsoids suggest that it may be associated with
the growth and collapse of an elliptical instability (Cébron et al., 2012). Outside of the band of resonance,
we find that the background flow is laminar and the zonal flow becomes independent of the geometry at
first order, in agreement with a non linear mechanism in the Ekman boundary layer (e.g., Calkins et al.,
2010; Sauret and Le Dizès, submitted for publication).

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Librations, oscillatory motions of the figure axis of a planet,
arise through gravitational coupling between a quasi-rigid celestial
object and the main gravitational partner about which it orbits
(Yoder, 1995; Comstock and Bills, 2003). Several librating bodies
also possess a liquid layer, either an iron rich liquid core like on
Mercury, Io, Ganymede, and the Earth’s Moon, and/or a subsurface
ocean like on Europa, Titan, Callisto, Ganymede and Enceladus
(Anderson et al., 1996, 1998, 2001; Williams et al., 2001, 2007;
Spohn and Schubert, 2003; Hauck et al., 2004; Breuer et al.,
2007; Margot et al., 2007; Lorenz et al., 2008; Van Hoolst et al.,
2008). The interaction of the fluid layer with the surrounding
librating solid shell resulting from viscous, topographic, gravita-
tional or electromagnetic coupling leads to dissipation of energy
and angular momentum transfer that need to be accounted for in
thermal history and orbital dynamics models of these planets.

There is a whole variety of celestial objects to which our ap-
proach will be applicable. In the next paragraphs we propose to fo-
cus on the Earth’s moon purely for pedagogical reasons to clarify
some astronomical aspects of the problem and distinguish be-
tween the different types of librations. In Fig. 1 we illustrate the
origin of the gravitational torques producing the librations in the
ll rights reserved.
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case of the Earth–Moon system considering only the principal har-
monic at the orbital period. Over geological time scales, the Lunar
mantle has been tidally deformed into a triaxial ellipsoid, resulting
in a mass anomaly.

Due to the eccentricity of its orbit, the Moon orbital period var-
ies along the orbit according to the third Kepler’s law. As illustrated
on Fig. 1(a), the induced phase lag between the Earth–Moon direc-
tion and the orientation of the equatorial bulge, the so-called opti-
cal longitudinal libration, produces a restoring torque along the
spin axis of the Lunar mantle. This time periodic torque forces
the Moon to physically oscillate axially about its state of mean
rotation. This small oscillation is referred to as the physical longitu-
dinal libration. Note that the optical libration is typically of the or-
der of 0.1–1 rad whereas the physical libration is only of order
10�4 rad due to the large inertia of the Lunar mantle.

In addition, the Moon is in a Cassini state, i.e., the relative orien-
tations of the normal to the ecliptic plane, the spin vector of the
Moon and the normal to the orbital plane of the Moon are fixed.
As illustrated in Fig. 1(b), it yields a gravitational torque, fixed in
the frame rotating with the Moon, that tends to align the equator
of the Lunar mantle with the orbital plane of the Moon. The spin
axis of the Moon being fixed relative to the normal to the orbital
plane, the mantle oscillates about an equatorial axis perpendicular
to the Earth–Moon direction resulting in the so-called physical lat-
itudinal libration. As with longitudinal libration, the physical latitu-
dinal libration is several orders of magnitude smaller than the
optical latitudinal libration.

http://dx.doi.org/10.1016/j.pepi.2012.05.005
mailto:jerome.noir@erdw.ethz.ch
http://dx.doi.org/10.1016/j.pepi.2012.05.005
http://www.sciencedirect.com/science/journal/00319201
http://www.elsevier.com/locate/pepi
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Fig. 1. Schematic representation of the Earth–Moon system illustrating the origin of the torque producing (a) libration in longitude, (b) libration in latitude. All angles have
been exaggerated for clarity purposes. E and W represent two fixed point of the lunar mantle.
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In contrast with precession or nutation that are well repre-
sented by gyroscopic motions of the solid shell, it is important to
note that librations both in longitude and latitude do not result
in changes of the orientation of the spin axis of the planet on
diurnal time scales. The combination of optical librations both in
longitude and latitude can be observed in an sequence of NASA
images of the Moon taken from the Earth along its orbit (http://
en.wikipedia.org/wiki/Libration).

The mechanical forcing produced by the two components of
libration that drive the flow in the liquid layer of a planet can be
illustrated by two concept laboratory experiments, as illustrated
in Fig. 2. A turntable mimics the mean rotation of the planet while
Librations

Longitudes

Latitudes
Moto

(a)

Motor 2

(b)

Fig. 2. Schematic representation of the librations in latitude (yellow) and longitude (re
represents two simple schematics of experimental setups that mimic libration in longitu
the rotating table. (For interpretation of the references to color in this figure legend, the
the oscillation of the planet’s solid shell is achieved by a mechan-
ical system attached to the rotating table. Longitudinal libration, a
time periodic oscillation of the body’s figure axis about its mean
rotation axis, can be simulated by oscillating the container about
the vertical axis (Fig. 2(a)). Latitudinal libration, a time periodic
oscillation of the figure axis about an equatorial axis that is fixed
in the rotating frame (the turntable), is illustrated in Fig. 2(b). In
the present paper we only consider the flow driven by physical lon-
gitudinal libration, herein referred to as longitudinal libration.

Several experimental, numerical and theoretical studies have
been devoted to libration-driven flows in axisymmetric containers
to investigate the role of the viscous coupling in librating planets. It
Motor 1
r 2

Motor 1

d). The left panel represents the two librations for the Earth Moon, the right panel
de (a) and latitude (b). Note that in both cases the driving mechanism is installed on

reader is referred to the web version of this paper.)
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Fig. 3. Schematic view of the triaxial ellipsoid.
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has been shown that longitudinal libration in an axisymmetric
container can drive inertial modes in the bulk of the fluid as well
as boundary layer centrifugal instabilities in the form of Taylor-
Görtler rolls (Aldridge, 1967, 1975; Aldridge and Toomre, 1969;
Tilgner, 1999; Noir et al., 2009, 2010; Calkins et al., 2010; Sauret
et al., 2012a). In addition, laboratory and numerical studies
(Aldridge, 1967; Wang, 1970; Calkins et al., 2010; Noir et al.,
2010; Sauret et al., 2010, 2012a) have confirmed that non-linear
interactions within the Ekman boundary layers generate a steady,
axisymmetric flow, called zonal flow. Analytical derivations of the
zonal flow driven by longitudinal libration have been carried out in
cylindrical cavity for an arbitrary libration frequency (Wang, 1970),
in spherical geometry at low libration frequency (Busse, 2010) and
more recently in spherical geometry at an arbitrary frequency
(Sauret and Le Dizès, submitted for publication).

Although practical to isolate the effect of viscous coupling, the
spherical approximation of the core-mantle or ice shell–subsurface
ocean boundaries, herein generically called the CMB, is not physi-
cal from a planetary point of view and very restrictive from a fluid
dynamics standpoint. Indeed, due to the rotation of the planet, to
the gravitational interactions with companion bodies and to the
low order spin-orbit resonance of the librating planets we are con-
sidering, the general figure of the CMB must be ellipsoidal with a
polar flattening and a tidal bulge pointing on average toward the
main gravitational partner (cf. Goldreich and Mitchell, 2010). This
assumes that the libration period is far shorter than a typical defor-
mation time scale of the CMB.

In contrast with the spherical or cylindrical geometry, it has
been demonstrated analytically that longitudinal libration in
librating ellipsoidal cavity with ḿoderateéquatorial eccentricity,
i.e., with deformation larger than the thickness of the Ekman
boundary layer, cannot produce resonance through direct forcing
of a single inertial mode (Zhang et al., 2011). This is satisfied for
the two non-axisymmetric containers considered in the present
study. Recent analytical and numerical work by Cébron et al.
(2012) demonstrates, however, that triadic resonances are possible
between two inertial modes and the elliptically deformed basic
flow, leading to the so-called Libration Driven Elliptical Instability
(LDEI). The elliptical instability can stably saturate in a narrow
range of libration amplitude in the immediate vicinity of instabil-
ity threshold (Kerswell and Malkus, 1998; Herreman et al., 2009;
Cebron et al., 2012). Outside of this limited window, a transition
occurs that lead to the development of space-filling turbulence
(Malkus, 1989). This turbulence, which acts to disrupt the ellipti-
cally unstable base state, decays and the flow ‘relaminarizes’.
The relaminarization phase ends when the base state re-estab-
lishes itself. The elliptical instability will then give way again to
turbulence. In planetary liquid cores, such an instability could be
responsible for an increased viscous dissipation (Le Bars et al.,
2010), for the induction of a magnetic field (Kerswell and Malkus,
1998; Herreman et al., 2009), or the presence of a dynamo (Le Bars
et al., 2011).

Finally, longitudinal libration in a non-axisymmetric ellipsoid
can excite instabilities, which develop as the shell rotation is slow-
ing down during the libration cycle (Chan et al., 2011), at suffi-
ciently low frequency and large amplitude. In contrast with the
side wall centrifugal instability observed in axisymmetric con-
tainer, the unstable region extends further inside the fluid interior.
The underlying mechanism as well as the scaling of the threshold
of these instabilities have yet to be investigated via a systematic
exploration of the parameter space.

This paper aims at describing the zonal flow driven by longitu-
dinal librations in non-axisymmetric ellipsoidal containers, for
which we expect the topographic coupling to be dominant. Spher-
ical and hemispherical containers have been included for compar-
ison to emphasize the effect of the topography.
In Section 2 we present the theoretical frame work for libration
driven flow, the experimental method is described in Section 3,
Section 4 presents the experimental results. Finally, implications
for planets and moons are considered in Section 5.

2. Mathematical background and control parameters

Let us consider a homogeneous, electrically non-conductive and
incompressible fluid enclosed in a librating triaxial ellipsoidal cav-
ity. The equation of the ellipsoidal boundary can be written (Fig. 3)

x2

a2 þ
y2

b2 þ
z2

c2 ¼ 1; ð1Þ

where (x, y, z) is a cartesian coordinate system with its origin at the
center of the ellipsoid, x̂ is along the long equatorial axis a; ŷ is
along the short equatorial axis b, and ẑ along the rotation axis c.
We define the ellipticity b as

b ¼ a2 � b2

a2 þ b2 ; ð2Þ

and the aspect ratio

c� ¼ c
R
; ð3Þ

where R stands for the mean equatorial radius R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2Þ=2

q
. In

the inertial frame, the longitudinal librating motion of the container
can be modeled by a time dependence of its axial rotation rate:

XðtÞ ¼ X0 þ D/ xl sinðxltÞ: ð4Þ

here, X0 represents the mean rotation rate, D/ is the amplitude of
libration in radians and xl is the angular frequency of libration.

To allow for an easy comparison with previous analytical work,
we present the mass conservation and the momentum equations
in the frame of reference attached to the librating container. Using
a as the length scale and X�1

0 as the time scale, these equations are
written

@u
@t
� u� ðr� uÞ þ 2ð1þ e sin ftÞẑ� u

¼ �rpþ Er2u� ef cos ftðẑ� rÞ; ð5Þ

r � u ¼ 0: ð6Þ

The first two terms on the left hand side of (6) are the standard
material derivative of the velocity field; the third term is the Cori-
olis acceleration. The right hand terms are, respectively, the pres-
sure force, the viscous force and the Poincaré force. In (6), p is
the reduced pressure, which includes the time-variable centrifugal
acceleration. The Ekman number E is defined by
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E ¼ m
X0a2 ; ð7Þ

where m is the kinematic viscosity. The dimensionless libration fre-
quency f is defined as

f ¼ xl

X0
: ð8Þ

Lastly, e is the libration forcing parameter defined by

e ¼ D/f : ð9Þ

Typical values of the dimensionless parameters for planets of
our solar system are presented in Table 2 (courtesy of Noir et al.
(2009)). The viscous solution to (6) must satisfy the no-slip bound-
ary condition on the CMB

u ¼ 0 at x2 þ 1þ b
1� b

y2 þ 1þ b
c2 z2 ¼ 1: ð10Þ

In the limit of small Ekman number, the flow can be decom-
posed into an inviscid component U in the volume and a boundary
layer flow ~u. Introducing this separation, (Kerswell and Malkus,
1998) proposed the following solution to the inviscid equations
of motion subject to the non-penetration condition at the CMB:

U ¼ �e sin ftðẑ� r� brxyÞ; ð11Þ
p ¼ �ef bxy cos ft þ e sin ftð1þ sin ftÞðjẑ� rj2 þ bðx2 � y2ÞÞ: ð12Þ

The base flow U is the sum of a time dependent uniform vortic-
ity flow and a gradient component. It follows that the Reynolds
stresses resulting from (11) are balanced by the pressure gradient.
Therefore, no net zonal flow can result from the non-linear interac-
tions in the quasi-inviscid interior (Busse, 2010). However, the no-
slip boundary condition (10) is not entirely fulfilled by this inviscid
solution. Hence, viscous corrections in the Ekman boundary layer
must also be considered. Their non-linear interactions can generate
zonal flow in the bulk (Wang, 1970; Busse, 2011, 2010), as already
observed in spherical and cylindrical (i.e., axisymmetric) geome-
tries (Aldridge, 1967; Wang, 1970; Calkins et al., 2010; Noir
et al., 2010; Sauret et al., 2010, 2012a). In the present paper we
use the analytical derivation of the zonal flow from Sauret and Le
Dizès (submitted for publication), an outline of the method is pre-
sented in Appendix A.

3. Experimental method

Fig. 4 represents a schematic view of the experimental device
used in the present study. Except for the containers, the laboratory
apparatus is the same as in Noir et al. (2009) (see Section 3.1 for a
detailed description). The generic set-up consists of a turntable
rotating at a constant angular velocity X0 and an oscillating acrylic
tank centered on the turntable activated by a brushless direct drive
motor. Both rotations are controlled using a motion control system
that allows for high accuracy, better than 0.1% on the mean rota-
tion and 0.25% on the angular displacement. The container consists
of two ‘‘hemispheres’’ CNC machined from cast acrylic cylindrical
blocks that are polished optically clear. To characterize the effect
of the topographic coupling resulting from the non axisymmetry
of the librating body, we use three different containers: (i) a sphere
of radius a = 127 mm, (ii) a prolate spheroid of long axis
a = 127 mm and short axis b = c = 119 mm and (iii) a prolate spher-
oid of long axis a = 127 mm and short axis b = c = 89 mm. These
containers correspond to an ellipticity in the equatorial cross sec-
tion b equal to 0, 0.06 and 0.34, respectively. In all three configura-
tions the rotation axis is along c.

We perform direct visualizations of the interior flows using a di-
luted solution of rheological fluid (Kalliroscope), and a horizontal or
vertical laser light sheet. A CCD camera located above the container
records movies and still images to characterize the time evolution
of the shear structures in the interior. In addition, we use a remotely
controlled syringe pump to inject dye (fluorescein or non-diluted
Kalliroscope) at a cylindrical radius si � 0.38 along the short axis
of the mean elliptical equator, i.e., the time averaged figure axis of
the equatorial cross-section (see Fig. 5(c)). We then manually track
the dye over a full revolution (until it passes by the injection point
again) or a fraction of a revolution when the patch spatial coherence
is lost due to turbulent mixing. These observations are used to de-
rived the mean angular velocity along the elliptical path followed
by the dye as illustrated in Fig. 5(c). Error bars are obtained by
repeating the dye injection several time during the same experi-
ment. Although straightforward, this technique is not suitable
when the azimuthal velocity varies on time scale less than a period
of revolution of the dye patch.

To address the time dependency of the azimuthal velocity in the
system, we performed LDA measurements using the ultraLDA sys-
tem employed in Noir et al. (2010). The point of measurement as
been choose as to coincide with the dye inlet position at times
t = 0 + N/2f, where N is an integer. For detailed description of LDA
principles and measurement techniques we refer the reader to
Appendix A of Noir et al. (2010). In principle an LDA device works
as follows: a laser beam is split to produce two beams that are col-
limated at a point inside the liquid where it forms a linear pattern
of interference fringes. Particles in suspension in the fluid act as
reflectors when passing through the fringe pattern resulting in
back scattered light that is focussed on a photodetector. A spectral
analysis of the received signal leads to a measurement of the veloc-
ity in the direction perpendicular to fringes.

Due to the difference of index of refraction of water, acrylic and
air, the laser beams traveling through the system experience two
optical distortions at the air–acrylic and water–acrylic interface.
The laser beams will be deflected both in longitude and latitude
independently of one-another depending on their orientation with
the local normal to the surface. In some situations, the two beams
may no longer be coplanar, precluding any measurements. This is
indeed the case in all possible configurations with the current
experimental setup. In order to overcome this limitation, we per-
form LDA measurement with the northern half of the container re-
placed with a flat plate of acrylic. The LDA device is located above
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Table 1
Physical and dimensionless parameters definitions and their typical values in the
laboratory experiment, with the rotation axis c = b.

Parameter Definition Experiment

a Long axis 127 mm
b Short axis 89 mm, 119 mm and 127 mm
c Short axis 89 mm, 119 mm and 127 mm
Si Injection point radius 48 mm
X0/2p Mean rotation frequency 0.5 Hz
xL/2p Libration frequency 0.25–1 Hz ± 0.1%
D/ Angular displacement 0 � p/2
m Kinematic viscosity 10�6 m2 s�1

E m/(X0 a2) 2.0 � 10�5

f xL/X0 0.5–2
b a2�b2

a2þb2
0.34, 0.06 and 0

c⁄ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2þb2Þ=2
p 0.812, 0.967 and 1

e (D/) f 0–1.6
si Si/a 0.38
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the tank and oriented to perform measurements of the azimuthal
component of velocity (Fig. 4). Such geometry retains the non axi-
symmetry of the equatorial cross section and the latitudinal varia-
tion of the wall curvature. As it will be shown in the next section,
the mean zonal flows generated by the libration of the full and half
containers are in quantitative agreement over a broad range of
parameters. However, it must be noted that only resonant modes
where the vertical velocity at the equator is zero can be excited
in the hemispherical configurations. One may envisage further
implications when substituting the upper hemi-sphere/ellipsoid
with a flat lid such as viscous drag, equatorial edges driven flows
or reduced effects of curvature. As we shall see in the following
of this paper, quantities like the zonal flow does not significantly
differ between full and half container. This is indeed supported
by the similar analytical prediction obtained in spherical and cylin-
drical geometries by Busse (2011) and Sauret and Le Dizès (sub-
mitted for publication).

In order to get the best signal-to-noise ratio, we use a fresh sus-
pension of titanium micro-particles, TiO2, every day. The data rate
of LDA measurements varies typically between 25 and 500 Hz. In
order to perform spectral analysis and proper time averaging, each
time series is resampled at 10 Hz using the non-linear interpola-
tion routine of Matlab to provide an equally spaced dataset. The
mean zonal flow is obtained by block averaging the data, each
block is 20 libration periods wide, each record is 200 periods long
in the steady state (i.e., after several spinup times). The error bars
represent the variability of the zonal flow from block to block. We
obtain error bars of the order of 2–5% at moderate forcing (e < 1.5)
and 15–20% for e > 1.5. Finally, when laminar-turbulence intermit-
tency is observed, we perform moving average over a window of
10 periods of libration with an overlap of 90% to characterize the
zonal flow in each phase of the system.

Each experiment follows a common protocol. First, we start the
rotation of the turntable, once the fluid is in solid body rotation we
turn on the oscillation of the container. When performing dye
tracking, we wait 15 min before injecting the dye and recording
from the CCD. When performing LDA measurement, we start the
acquisition as we turn on the libration to follow the development
of the dynamics until it reaches a steady state.

The physical and dimensionless parameters accessible with the
present device are summarized in Table 1. In contrast with the pre-
vious studies using this device, we fix here the mean angular veloc-
ity to X0 = 30 rpm, corresponding to an Ekman number
E = 2 � 10�5, and we explore the parameter space (f,D/).

4. Results

In Fig. 6, we present the time averaged zonal flow from direct
visualization and LDA measurements together for a fixed Ekman
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number, E = 2 � 10�5, a fixed libration frequency, f = 1, and a libra-
tion amplitude D/ that varies from 0.05 to 1.6 rad. In all cases, the
mean zonal flow is retrograde at the point of measurement. In the
range of studied parameters and at the measurement location
si = 0.38, we do not observe significant variations of the zonal flow
amplitude with the ellipticity, nor with the half or full tank config-
urations. Hence, we expect the same mechanism, weakly depen-
dent on the geometry, to produce the zonal flow in all six
configurations (full tank, b = 0, 0.06, 0.34; half tank b = 0, 0.06,
0.34). (Busse, 2010; Busse, 2011; Calkins et al., 2010; Noir et al.,
2010; Sauret et al., 2010; Sauret and Le Dizès, submitted for publi-
cation) have proposed that the geostrophic zonal flow in librating
axisymmetric containers results from boundary layer non-linear
interactions, which yields a zonal flow independent of the Ekman
number at the first order, scaling as hU/i / e2. Sauret and Le Dizès
(submitted for publication) recover the pre-factor and the radial
dependency of the geostrophic flow by deriving the boundary layer
flow at the order Oðe2E1=2Þ in a full sphere (see Appendix A). For a
probe volume located at si = 0.38, same as dye injection location,
and a frequency f = 1, the authors predicts a zonal flow, hU/i = ae2,
with a = �0.166. We observe a good agreement between their ana-
lytical spherical model represented by the dashed line in Fig. 6 and
our LDA measurements in all six configurations up to D/ = 1.6 rad.
The theoretical zonal flow in a non-axisymmetric container has yet
to be derived. Nevertheless, our results suggest that the full sphere
model remains a good approximation at first order even for finite
ellipticity, highlighting the minor role of the curvature in the
source mechanism.

Significant deviations only appear for the largest value of DU
studied here, where we observe a larger zonal flow than predicted
by the non-linear analysis valid only for e� 1. It is likely that for
e J 1, the boundary layer flow derivation of Sauret and Le Dizès
(submitted for publication) is not valid anymore and finite ampli-
tude effects should be introduced.

In Fig. 7, we present LDA measurements of the time average zo-
nal velocity as a function of the libration frequency at E = 2 � 10�5

and a fixed libration amplitude D/ = 0.7 rad. All measurements are
performed only in the half container geometry using LDA to diag-
nose the flow. We also plot the analytical geostrophic zonal velocity
for a probe volume located at si = 0.38 derived from Sauret and Le
Dizès (submitted for publication) for a full sphere (see Appendix A).

For b = 0 and b = 0.06, we observe only marginal differences be-
tween the different half containers up to f � 1.6: the flow remains
laminar and the experimental results are consistent with the retro-
grade geostrophic zonal flow predicted from the non-linear bound-
ary layer mechanism. At higher frequencies, the theoretical
analysis of Sauret and Le Dizès (submitted for publication) predicts
a geostrophic discontinuity in the zonal flow associated with the
so-called critical latitude. As we scan in frequency, the geostrophic
shear structure passes by the measurement point when
sc = si = 0.38, i.e., f = 1.85. In Fig. 7, our LDA measurements do not
show a sharp transition in this frequency range and we note a sig-
nificant discrepancy between the predicted zonal flow and the
time averaged velocity measurements. Several effects can account
for this disagreement. First, in the theoretical analysis, the Ekman
boundary layer becomes singular at the critical latitude resulting
in a local infinite geostrophic shear. This discontinuity can be re-
solved by taking into account higher order terms. Doing so, the
geostrophic shear has a finite amplitude and occurs in a E1/5 width
layer centered on the critical cylindrical radius sc (e.g. Noir et al.,
2001; Kida, 2011). Thus, we do not expect the analytical zonal flow
derived by Sauret and Le Dizès (submitted for publication) to be
valid when sc � E1/5 < si < sc + E1/5. As we scan in frequencies, the re-
gion of influence of the geostrophic shear structure passes by the
point of measurement located at a cylindrical radius si when
1.73 < f < 1.92 (Fig. 7). Second, in this range of parameters e be-
comes significantly larger than unity. Thus, we expect finite ampli-
tude perturbations, not taken into account in the analytical model,
to contribute to the local mean zonal velocity.

The case b = 0.34 is more complex. Indeed, for f 2 [1.43;1.66],
we observe intermittency of lower and higher amplitude zonal
flows represented by open diamonds and red full diamonds,
respectively. This intermittency is illustrated in Fig. 8, which repre-
sents the time evolution of the norm of the azimuthal velocity
averaged over 10 oscillations for a particular experiment at D/
= 0.7 rad (e � 1), f = 1.46, b = 0.34 (red) and b = 0.06 (blue). At
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Top views of the shear structures in a plane parallel to the equator. The time stamp of each snapshot is indicated by circle in (a). The first and last pictures show little
structures, which is characteristic of a laminar flow. In contrast, the second snapshot exhibits numerous small scale structures, typical of turbulent flows. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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b = 0.34, the zonal flow averaged over 10 oscillations evolves in
time between a low amplitude j < U/1 > j � 0:09 and a large
amplitude j < U/1 > j � 0:14. Using a diluted Kalliroscope suspen-
sion and a camera at the top with a horizontal laser light sheet 1cm
below the flat top lid we visualize the shear structures in the inte-
rior. Periods of large amplitude mean zonal flow are systematically
correlated with small scale shear structures, corresponding to the
bright filaments in the second snapshot, whereas periods of low
amplitude mean zonal flow are associated with laminar flows,
which are characterized by little contrast variation as on the first
and last snapshots. The duration of each laminar and turbulent
period varies over the experiment but is always of the order of a
fraction of the spinup time (Each black and white rectangle at
the top of Fig. 8(a) represents a spinup time (�70s)). The transition
from low amplitude to large amplitude mean zonal flow occurs
over a typical timescale s � 25 s (�10 rotations) that remains con-
sistent over the whole experiment. This particular dataset is repre-
sentative of all experiments where intermittent turbulence is
observed. The typical time scales of the herein reported intermit-
tent turbulence are not consistent with the centrifugal instability
observed in the spherical shell (Noir et al., 2009) or in previous
numerical simulations in non-axisymmetric ellipsoids at low libra-
tion frequencies by Chan et al. (2011), which both occur once per
libration period.

In the band of frequency f 2 [1.43;1.66], the zonal flow pre-
dicted by Sauret and Le Dizès (submitted for publication) is signif-
icantly different from our observations, in particular it fails at
reproducing the intermittent low and large amplitude zonal flow.
5. Discussion and concluding remarks

In the present study we explore the zonal flow regimes driven
by longitudinal libration in the (f,D/)-parameter space at
E = 2 � 10�5 for spherical and non-axisymmetric containers. At
fixed frequency f = 1 the flow in the bulk remains laminar for all
accessible amplitudes of libration DU regardless of the tank geom-
etry. In this laminar regime, we measure a net zonal flow that is
independent of the geometry at first order and well explained by
non-linearities in the Ekman boundary layer. In contrast, at a fixed
amplitude of libration DU = 0.7 rad, we observe space-filling tur-
bulence correlated with an enhanced zonal flow in specific bands
of frequency and for the container with the largest equatorial ellip-
ticity. Using two containers with different equatorial ellipticities
and a spherical cavity, we unambiguously demonstrate that the
observed instability results from the topographic coupling and
not from viscously-driven dynamics. Although the range of acces-
sible parameters in our device does not allow us to study in great
details the mechanism underlying the onset of the turbulent re-
gimes, some possible routes can be investigated.
Table 2
Physical and dimensionless parameters values for planets, listed from top to bottom in t
(2009)). Titan(Grav) and Titan(Atm) correspond to Titan’s forced longitudinal librations
anagram SO and LC stand for subsurface ocean and liquid metal core. Unless specified, the a
and m = 3 � 10�7 m2/s, respectively, for subsurface oceans and molten iron rich core. Tspin

Schubert (2003), (3) Hauck et al. (2006), (4) Sohl et al. (2002), (5) Williams and Dickey (200
et al. (2001), (10) Van Hoolst et al. (2008).

Planets Internal layer ro (km) ri (km) Tspin (da

Callisto(1,2) SO �2300 2000–2300 16.68
Ganymede(3,4) LC �800 0–500 7.15
Earth’s moon(5) LC �350 0–150 27.3
Titan(Grav)(6,7) SO �2500 2350–2450 15.95
Mercury(8) LC �1800 0–1700 58.6
Titan(Atm)(6,7) SO �2500 2350–2450 15.95
Io(9) LC �500 – 1.77
Europa(10) SO �1450 1300–1400 3.55
Comparing Figs. 6 and 7 for e > 1, our results suggest that the
onset of instability is not characterized by a critical Rossby num-
ber, ec. For f = 1 no turbulence is observed in any of our containers
even at the largest libration amplitude accessible in this experi-
ment, which corresponds to a Rossby number e � 1.6. In contrast,
the intermittent turbulence is observed in the container of large
ellipticity in a band of frequency f 2 [1.43;1.66], corresponding to
e 2 [1;1.16]. This highlights the peculiar role of the ellipticity and
frequency in the destabilization mechanism in the system.

In rapidly rotating non-axisymmetric container, intermittency
of turbulent flows followed by a re-laminarization in particular
bands of frequency are often typical of the growth and collapse
of an elliptical instability (Malkus, 1989). Furthermore, recent
numerical and theoretical work by Cébron et al. (2012) has demon-
strated that longitudinal libration can drive elliptical instability in
triaxial and biaxial ellipsoids. In order to test if such a mechanism
could explain our observations we calculate the growth rate pre-
dicted by the geometry-independent WKB analysis assuming the
base flow (11) and (12) is realized in the experiment (Cébron
et al., 2012):

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

inviscid � ðfres � f Þ2
q

� KE1=2; ð13Þ

with

rinviscid ¼
16þ f 2

res

64
be; ð14Þ

where fres is resonant frequency and K is a viscous dissipation factor
typically in the range [1–10]. Assuming a perfect triadic resonance
at f = fres = 1.5, we obtain a negative growth rate for b = 0.06 and a
positive growth rate for b = 0.34. In Fig. 8 we superimposed the the-
oretical growth of the azimuthal velocity for b = 0.34 and the two
extreme values of the dissipation factor, K = 1 (dotted black) and
K = 10 (dashed black) to the time series of LDA azimuthal flow in
the half spheroid configuration. The good agreement for K = 10,
the most dissipative case, suggests that an LDEI mechanism may ex-
plain our observations. Note that the WKB approach is based on a
local plane waves decomposition of the velocity field independent
of the geometry of the container. It is therefore applicable to both
the half and full container providing the same base flow is excited.
The WKB analysis provides an upper bound of the growth rate. A
more accurate prediction can be obtain via a global modes analysis,
which is out of the scope of the present paper. In the present exper-
iment, the limited quantitative diagnostics in this complex geome-
try do not allow us to draw a hard conclusion. Further numerical
and experimental investigations at lower Ekman numbers will be
necessary to characterize in details the mechanism underlying the
intermittent turbulence and how this turbulence modifies the mean
zonal flow. Exploring the parameter space using 3D numerical sim-
ulations in non-axisymmetric containers will remain limited to
erms of increasing boundary layer Reynolds number value (Adapted from Noir et al.
driven, respectively, by gravitational coupling and by atmospheric circulation. The
mplitudes of libration are from Comstock and Bills (2003). We use viscosities m = 10�6

is the rotational period of the planet. (1) Kuskov and Kronrod (2005), (2) Spohn and
2), (6) Lorenz et al. (2008), (7) Tobie et al. (2005), (8) Margot et al. (2007), (9) Anderson

y) f⁄ D/ (rad) E e

1 4.22 � 10�6 4 � 10�14 4.22 � 10�6

1 5.64 � 10�6 4 � 10�14 5.64 � 10�6

1 7 � 10�5 10�12 7 � 10�5

1 2.3 � 10�5 3.5 � 10�14 2.3 � 10�5

2/3 2 � 10�4(8) 7.5 � 10�14 1.33 � 10�4

3 � 10�3 4.36 � 10�2(6) 3.5 � 10�14 1.3 � 10�4

1 1.3 � 10�4 3 � 10�14 1.3 � 10�4

1 2 � 10�4(10) .23 � 10�14 2 � 10�4
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E P 10�5. We are currently developing a new experimental setup to
overcome this limitation.

At planetary settings two scenarios may be drawn. In the first
scenario, the conditions required to drive intermittent turbulence
are not met and the topographic coupling does not significantly al-
ter the dynamics driven by viscous interactions in the boundary
layer. In that case we expect the flow in the interior to remain
laminar with a time averaged zonal component independent of
the Ekman number following a quadratic scaling in the amplitude
of libration. This would lead insignificant zonal flows in the range
10�9 m/day [ U [ 10�5 m/day for the celestial objects presented
in Table 2. As proposed by Calkins et al. (2010) such dynamics will
not result in significant energy dissipation nor magnetic field gen-
eration. In the second scenario, topographically driven space-filling
turbulence develop in the liquid layer of the planet. In that case
one may expect significant energy dissipation and maybe magnetic
field induction depending on the strength of the turbulence.

Understanding the underlying mechanism for the instability re-
ported in the present study is therefore fundamental for planetary
applications. In this study, we suggest that an LDEI mechanism,
identified numerically by Cébron et al. (2012) in biaxial and triaxial
librating ellipsoids, may be responsible for the observed space-
filling turbulence at moderate Rossby numbers in our experiment.
0 0.2 0.4 0.6 0.8 1
s

Fig. 9. Mean zonal flow hU/i as a function of the cylindrical radius s. The dashed
black lines represent the analytical solution in the sphere from Sauret and Le Dizès
(submitted for publication) and the dashed-dotted line (red in color figure)
represents the analytical solution in a cylinder from Wang (1970). (a) for f = 1, (b)
for f = 1.85. The two shaded rectangles indicate the cylindrico-radial extension of
the geostrophic cylinder spawn by the critical latitude in the sphere. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this paper.)
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Appendix A. Analytical determination of the mean zonal flow

In this section, we present the main steps of the analytical der-
ivation of the mean zonal flow induced by longitudinal libration in
spherical geometry and we refer the reader to Sauret and Le Dizès
(submitted for publication) for a more complete and generic
description.

In the limit of small Ekman number E� 1, the flow can be clas-
sically separated in two components: an inviscid component in the
bulk and a viscous component in the Ekman boundary layer of size
E1/2 attached to the mantle. Using a perturbative approach in the
limit of small libration amplitude D/� 1, the flow can be written
in the bulk:

U ¼ U0 þ ðD/ f Þ U1 þ ðD/ f Þ2 U2 þ oððD/ f Þ3Þ; ð15Þ

and in the boundary layer

u ¼ u0 þ ðD/ f Þ u1 þ ðD/ f Þ2 u2 þ oððD/ f Þ3Þ: ð16Þ

In the absence of librational forcing, the fluid is in solid-body rota-
tion U0 = s X0 e/. Then, as long as the libration period 1/f remains
small compare to the spin-up time,

ffiffiffi
E
p
� f , no spinup takes place

in the bulk at each libration cycle (Busse, 2010) and the first order
correction of the bulk flow is null: U1 = 0. However, to adjust the
velocity field between the bulk and the librating mantle, a flow u1

oscillating at frequency f develops in the thin Ekman layer. The non-
linear self-interactions of this oscillating flow lead to a nonlinear
steady flow in the boundary layer at order (D/ f)2, u2. The continu-
ity of the velocity at the interface between the inviscid interior and
the boundary layer implies a correction in the bulk flow at order
(D/ f)2, which generically writes U2 = s X2(s) e/. The expression of
X2(s) depends on the libration frequency f and the specific shape
of the container. The solution differs when considering a flat top
boundary as in the cylindrical geometry (Wang, 1970) and a curved
boundary as in the spherical geometry (Sauret and Le Dizès, submit-
ted for publication).

In Fig. 9, we show the resulting mean zonal flow < U/ > =s X2(s)
as a function of the cylindrical radius for two libration frequencies
f = 1 and f = 1.85, in the case of a sphere and a cylinder. In all cases,
we predict a scaling of the mean zonal flow with (D/ f)2 but the
radial profiles are different in each geometry.

In the case of the sphere the asymptotic derivation predicts a
divergent zonal flow at a critical cylindrical radius sc, which corre-
sponds to the so-called critical latitude hc defined as Bondi and Lyt-
tleton (1953):

hc ¼ acos
f
2

� �
: ð17Þ

sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

4

r
: ð18Þ

This critical latitude is associated with a breakdown of the Ek-
man boundary layer due to the total absorption of the inertial
waves at this location. In the analysis of Sauret and Le Dizès (sub-
mitted for publication) this breakdown appears as a singularity.
However, including terms of order OðE1=5Þ leads to a finite ampli-
tude shear scaling as E1/5 over a radial and latitudinal extension
scaling as E2/5 and E1/5, respectively (Stewartson and Roberts,
1963; Kida, 2011). Using these scalings in the context of a preces-
sional forcing, (Noir et al., 2001; Kida, 2011) have proposed that
the geostrophic cylinder spawn by the critical latitude scales as
E1/5 in width and E�3/10 in amplitude. The breakdown of the Ekman
boundary layer at the critical latitude and the subsequent scalings
are generic to any oscillatory mechanical forcing through the
boundary and remains therefore valid in the case of longitudinal
libration (Calkins et al., 2010). The complete derivation of the zonal
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flow including the higher order terms near the critical latitude is
very fastidious and was beyond the scope of the analysis of (Sauret
and Le Dizès, submitted for publication). Hence, we do not expect
the theoretical profile derived from their analysis to apply in the
range sc � E1/5 < si < sc + E1/5. At a fixed measurement point
si = 0.38, when scanning in frequencies, the geostrophic shear al-
ters the zonal flow measurements in a range 1.73 < f < 1.92 (see
Fig. 7 in Section 4).
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