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In this work, we report the excitation of inertial waves in a librating sphere even
for libration frequencies where these waves are not directly forced. This spontaneous
generation comes from the localized turbulence induced by the centrifugal instabilities
in the Ekman boundary layer near the equator and does not depend on the libration
frequency. We characterize the key features of these inertial waves in analogy with
previous studies of the generation of internal waves in stratified flows from localized
turbulent patterns. In particular, the temporal spectrum exhibits preferred values of
excited frequency. This first-order phenomenon is generic to any rotating flow in the
presence of localized turbulence and is fully relevant for planetary applications.
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1. Introduction

Rotating fluids support so-called inertial waves, which are associated with the
Coriolis force (Kelvin 1880). These waves can be directly excited by various harmonic
forcings whose frequencies range between plus and minus twice the spin frequency
(Greenspan 1968). For instance, Aldridge & Toomre (1969) showed the direct forcing
of inertial waves by small periodic oscillations of the spinning rate of a rotating sphere
(i.e. ‘librations’) for libration frequencies non-dimensionalized by the mean rotation
rate |ωlib| 6 2 (see also Zhang et al. 2013). The nonlinear self-interaction of the
excited inertial waves can lead to strong axisymmetric jets, as observed experimentally
for tidal forcing (Morize et al. 2010). Outside this range of frequencies, inertial waves
cannot be excited by direct forcing and were never observed except very recently in
an axially librating cylinder in the presence of instabilities near the outer boundary
(Lopez & Marques 2011; Sauret et al. 2012). The corresponding mechanism is still
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controversial and is the subject of the present study. We focus here on longitudinal
libration in a spherical geometry, which has recently received renewed interest mainly
because of planetary applications (e.g. Rambaux, Van Hoolst & Karatekin 2011).

Libration leads to rich dynamics in the contained fluid. At sufficiently large libration
amplitudes, centrifugal instabilities are induced near the equator of a sphere, where
they generate turbulence (Noir et al. 2009; Calkins et al. 2010). This instability is
generic to any librating container, as for instance in a cylinder (Noir et al. 2010;
Sauret et al. 2012). Libration also induces a mean zonal flow due to nonlinear
interactions in the boundary layers even in the absence of inertial waves (Busse 2010;
Sauret et al. 2010; Noir et al. 2012; Sauret & Le Dizès 2013). For libration frequency
|ωlib| 6 2, the dynamics of the fluid becomes more complicated, as the contribution of
the inertial waves to the mean flow is non-negligible. The energy fed to inertial waves
is then localized near Ekman-layer eruptions (Calkins et al. 2010; Sauret et al. 2012;
Koch et al. 2013). Finally, elliptical instability can also be excited by the libration
forcing in ellipsoidal containers (Cébron et al. 2012).

In this work, we characterize for the first time the inertial waves excited in a sphere
by the boundary flow induced by a longitudinal libration for ωlib > 2. In § 2, we
present the governing equations and the numerical methods used to tackle this problem.
Then § 3 is devoted to the description of the main numerical results. Taking advantage
of the well-known similarities between rotating and stratified flows (e.g. Veronis 1970),
those results are finally explained in § 4 in the form of an analytical model extended
from closely related studies of internal waves generation from turbulence (Townsend
1966; Dohan & Sutherland 2003, 2005; Taylor & Sarkar 2007).

2. Governing equations and numerical methods

Consider the flow in a sphere of radius R, filled with an incompressible,
homogeneous and Newtonian fluid of kinematic viscosity ν and density ρ, rotating
about the z-axis at the mean angular velocity Ω0. In addition to this mean rotation, the
sphere oscillates with an angular frequency ωwall and amplitude 1Ω . Using Ω0

−1 and
R as time and length scales, respectively, the instantaneous angular velocity is given by

Ω = [1+ ε cos(ωlibt)] ez, (2.1)

where ε = 1Ω/Ω0 and ωlib = ωwall/Ω0 are, respectively, the dimensionless libration
amplitude and frequency. A schematic of the system is shown in figure 1(a). The
dimensionless equations of motion, written in the rotating frame of reference at the
mean angular velocity Ω0, are

∂u
∂t
+ (u ·∇) u+ 2 ez × u=−∇p+ E∇2 u, (2.2)

∇ ·u= 0, (2.3)

where u and p are, respectively, the velocity field in the rotating frame of reference
and the reduced pressure, which takes into account the centrifugal force. There
are three governing parameters in our problem: the Ekman number, E = ν/(Ω0R2),
describing the ratio of the viscous effects and the Coriolis force, ωlib and ε.
Throughout this study, we use the cylindrical polar unit vectors (er, eφ, ez). A no-slip
boundary condition is used on the outer boundary where u= ε cos(ωlibt) ez × r.

An analogous problem of internal wave generation from turbulence in a stratified
flow has shown, by comparison with laboratory experiments, that two-dimensional
numerical simulations capture the physical mechanism and key features of internal
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FIGURE 1. (a) Schematic of the upper quarter of the sphere with the cylindrical polar vectors
(er, eφ, ez). (b) Mesh grid used in the numerical model showing two zones: a bulk zone with
triangular elements and a boundary-layer domain with quadrangular elements. The inset is a
zoom of the mesh grid near the outer boundary.

wave generation (Dohan & Sutherland 2005). Therefore, to be able to reach
sufficiently small Ekman numbers, we base our study on axisymmetric simulations.
We use a commercial finite element code, Comsol Multiphysics. This numerical model
has already been successfully used to study similar problems of libration-driven flows
in spherical geometries (Sauret et al. 2010; Sauret & Le Dizès 2013) and cylindrical
geometries (Sauret et al. 2012). For more details about the numerical procedure and
the validation of the numerical code, we refer the reader to Sauret et al. (2010). To
ensure a high accuracy, all the simulations used in this work are performed with
standard Lagrange elements of P2–P3 type (i.e. quadratic for the pressure field and
cubic for the velocity field), and the number of degrees of freedom (DoF) used in the
simulations is typically of order 350 000. A typical mesh grid is shown in figure 1(b).
The mesh grid is composed of 17 794 elements, of which 6500 are quadrilateral
elements devoted to the mesh in the boundary-layer domain and the others are
triangular elements for the bulk. More precisely, the boundary-layer domain has a
thickness of 0.034 along the outer boundary and is discretized in the direction normal
to the boundary into 25 quadrilateral elements with an initial thickness of 5.9 × 10−5

and a stretching factor of 1.2. This ensures that we have a sufficient number of mesh
elements in the viscous layer, typically around 13 for the parameters considered in
this paper. In addition, the adaptive backward differentiation formula (BDF) order is
between 1 and 5 and the time step leads to more than 500 points per period of
libration.

3. Numerical results

3.1. From stable regime to boundary turbulence
In all the following we consider the small Ekman number (E � 1) and no spin-
up regime (ωlib �

√
E), i.e. no spin-up occurs in the bulk at each libration cycle

(see e.g. Greenspan 1968; Busse 2010). This situation is satisfied in planetary fluid
layers where the Ekman number is typically smaller than 10−12 and where the main
libration components have frequencies of order one (see e.g. Rambaux et al. 2011).
As shown in figure 2, three flow regimes are observed in the sphere depending on
the libration amplitude ε (see also Noir et al. 2009; Calkins et al. 2010). For a
libration amplitude ε lower than a critical value, called εTG, the flow remains stable
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FIGURE 2. Radial velocity ur in a librating sphere (ωlib = 3, E = 5×10−5) for different values of
the libration amplitude ε (from left to right, ε = 0.3, 0.55, 0.85); εTG and εturb are, respectively,
the critical value for the appearance of longitude rolls (see the zoom) and boundary turbulence.
Spontaneous generation of inertial waves is observed for ε > εturb.

and only the viscous layer is visible near the outer boundary; the flow remains laminar
everywhere. For ε > εTG but lower than a critical value, noted εturb, longitudinal rolls,
called Taylor–Görtler vortices, develop near the equator along the outer boundary.
Then, for an amplitude of libration ε larger than the critical amplitude εturb, the
longitudinal rolls turn into a turbulent patch localized around the equator. In this last
regime, even if the frequency of libration is such that no inertial waves are directly
forced (i.e. ωlib > 2), inertial waves are excited in the bulk, emitted from the turbulent
patch.

3.2. Characteristics of the generated inertial waves field
To study the generated inertial waves, we performed series of simulations during 30
libration periods (once the permanent regime is reached). An example is shown in
figure 3(a) for ωlib = 2.1, ε = 0.8 and E = 4 × 10−5, together with the space–time
diagram of the radial velocity ur taken at r = 0.2 in figure 3(b). The norm of the
two-dimensional Fourier transform of this time series is shown in figure 3(c). It
exhibits a patch of large amplitude located at ω = 2.1 and small values of kz. This
patch is directly related to the libration forcing at the frequency ωlib = 2.1. It is due
to the velocity variations associated with the Ekman pumping at each libration cycle.
In addition to this main frequency, another patch is observed around ω ∼ 1.6 and
kz ∼ 2–4, which is the signature of the inertial waves emitted in the bulk. The norm
of the Fourier transform averaged over z for r = 0.2 is shown in figure 3(d). Again, it
clearly exhibits a peak located at the libration frequency ω = 2.1. In addition, it shows
a secondary peak around ω = 1.4–1.6, as already observed in the cylinder (see Sauret
et al. 2012).

We have performed the same analysis for other libration frequencies: ωlib = 0.1
(figure 4a,b) and ωlib = 3 (figure 4c,d). In both cases, the norm of the Fourier
transform taken at r = 0.2 and averaged over z shows a large peak at the libration
frequency ω = 0.1 and ω = 3, respectively. For ωlib = 3, the situation is close to the
previous case with a peak around ω ∼ 1.5. For ωlib = 0.1 a wider range of frequencies
is excited in the bulk that may be related to the extended size of the turbulent patch
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FIGURE 3. Simulations for ωlib = 2.1, E = 4 × 10−5 and ε = 0.8. (a) Snapshot of the radial
velocity field ur at t ≡ 5π/(4ωlib). (b) Axial time series of ur as a function of z taken during 30
periods at r = 0.2 and corresponding to the simulation shown in figure 3(a) along the dashed
line. Apart from the oscillations of the sphere, the propagation of inertial waves is also visible.
(c) Corresponding norm of the Fourier transform P(ω, kz) showing the axial wavelength and
frequency of the generated inertial waves. The colour bar represents P(ω, kz). (d) Norm of the
Fourier transform of the radial velocity ur taken at r = 0.2 and averaged over z.

in the Ekman layer. Note also that, in this case, the frequency of libration as well as
its higher harmonics 2ωlib, 3ωlib, . . . allow direct forcing of inertial waves. However,
the mechanism described above remains fully generic and is superimposed onto these
direct forcings, the only difference being that the spectrum is less localized around
ω ∼ 1.4–1.6.

4. Comparison with an idealized analytical model

Following the seminal study of Townsend (1966) and the more recent work of
Taylor & Sarkar (2007) for internal waves, the inertial wave propagation in the bulk
of the sphere can be understood by a linear model. For the sake of simplicity, we
consider here a two-dimensional model and neglect the curvature of the boundary of
the sphere. In his study of internal waves generated at a horizontal interface, Townsend
(1966) considered a Gaussian perturbation in both space and time along the horizontal
plane z = 0 of the vertical displacement, which is directly related to the vertical
velocity. Following the analogy between stratified and rotating flows, it is natural to
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FIGURE 4. Snapshots of the radial velocity field ur for E = 4 × 10−5, ε = 0.8 at (a) ωlib = 0.1
and (c) ωlib = 3. Corresponding norms of the Fourier transform of the radial velocity averaged
over z for r = 0.2 at (b) ωlib = 0.1 and (d) ωlib = 3.

consider here a perturbation of the radial velocity along the plane r = 1 and localized
around the equator (r = 1, z = 0). To perform a tractable analysis, we assume this
perturbation to be separable in space and time, i.e.

up
r (z, t)= f (z) g(t), (4.1)

where the spatial function f (z) is maximum at z = 0. In the following, owing to the
symmetry of the system with respect to the equator of the sphere, we only consider
the half-domain z> 0. The Fourier transform of the expression (4.1) leads to

ûp
r (kz, ω)=

∫∫
up

r (z, t) exp[−ikzz+ iωt] dt dz= f̂ (kz) ĝ(ω), (4.2)

where k = (kr, kz) is the wavevector and ω is the frequency. The propagation of this
perturbation along the r-direction can be written as

ur(r, z, t)= 1

4π2

∫∫
f̂ (kz) ĝ(ω) exp[i(kr(1− r)+ kzz− ωt)] dω dkz. (4.3)
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The dispersion relation for inertial waves links the axial and radial components of the
wavevector:

kr =±kz

√
4
ω2
− 1. (4.4)

The radial velocity field can then be written as

ur(r, z, t)= 1

4π2

∫ 2

−2
ĝ(ω) e−iωt dω

∫
f̂ (kz) exp

[
ikz(z± (1− r)

√
4
ω2
− 1)

]
dkz, (4.5)

neglecting the contribution for |ω| > 2, which corresponds to evanescent waves
(Greenspan 1968). The relation (4.5) can be rewritten as

ur(r, z, t)= 1
2π

∫ 2

−2
ĝ(ω) f

(
z± (1− r)

√
4
ω2
− 1

)
e−iωt dω. (4.6)

The temporal Fourier transform of the radial velocity at a position (r, z) is thus

ûr(r, z, ω)= ĝ(ω) f

(
z± (1− r)

√
4
ω2
− 1

)
(4.7)

for |ω|6 2, with a negligible contribution from |ω|> 2. This expression shows that the
signal in the sphere, at first order and neglecting the viscosity, is the product of the
temporal signal of the initial excitation ĝ(ω) and the spatial function f . Remembering
that this spatial function is localized around 0, the energy in the z> 0 space is mainly
focused around trajectories

z− (1− r)

√
4
ω2
− 1= 0, i.e. ω = 2(1− r)√

(1− r)2 + z2
. (4.8)

This is readily interpreted geometrically. Starting from a point source of fluctuations,
waves of all frequencies are emitted with a given amplitude, which depends on the
initial excitation in the turbulent patch. Waves with |ω| > 2 are evanescent, while
waves with |ω| 6 2 propagate following the dispersion relation ω = 2 cos θ , where θ
is the angle of propagation (see e.g. Greenspan 1968). This means that a given point
(r, z) can only be reached by a wave having the specific frequency given by (4.8). This
geometrical path is plotted in figure 5(a–d) for different radial positions and shows
good agreement with the numerical results.

To go further, we need the two functions f and g, which can be obtained from
simulations. The axial extension of the source, f (z), is well modelled by a Gaussian
fit, as illustrated in figure 6(a), where we have plotted the maximum amplitude
of the fluctuation of the velocity normal to the outer boundary, i.e. the spherical
radial velocity. Note that considering the time-averaged velocity normal to the outer
boundary leads to a similar lateral extension of the turbulent patch. Taking into
account this extension of the source allows one to estimate the extension of the
propagating signal around the geometrical path (4.8), taking for instance

z− (1− r)

√
4
ω2
− 1=±σ, (4.9)

where σ is the standard deviation of the Gaussian fit. Results are shown in
figure 5(a–d) and show good agreement with the numerical results.

728 R5-7



A. Sauret, D. Cébron and M. Le Bars

0

0.05

0.10

0.15

0.20

0.25

(a) (b)

(c) (d )

–0.78

–0.58

–0.38

–0.18

0.02

0.22

0.42

0.62

0.82

0 0.5 1.0 1.5 2.0 2.5

–0.72

–0.52

–0.32

–0.12

0.08

0.28

0.48

0.68

0 0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
–0.4

–0.2

0

0.2

0.4

0.6

0

0.2

0.4

–0.4

–0.2

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

z

z

0

0.05

0.10

0.15

0.20

0.25

0

0.05

0.10

0.15

0.20

0.25

0

0.05

0.10

0.15

0.20

0.25

0 2.5 0 2.5

FIGURE 5. Norm of the Fourier transform P(ω) as a function of z for slices at different radial
positions: (a) r = 0.2, (b) r = 0.4, (c) r = 0.6 and (d) r = 0.8. The parameters used in the
simulations are ωlib = 2.1, ε = 0.7 and E = 4 × 10−5. The continuous cyan lines represent the
geometrical path given by relation (4.8), and the dashed cyan lines take into account the axial
extension of the turbulent patch following (4.9).

A typical temporal Fourier transform of the excitation is shown in figure 6(b).
At large frequencies, the turbulent patch is well fitted by a slope ω−3 characteristic
of a two-dimensional turbulence (see e.g. Smith & Waleffe 1999; Boffetta & Ecke
2012). For ω ∈ [0, 2] corresponding to the propagative waves, the norm of the
Fourier transform is nearly constant; hence, according to (4.7), no frequency is a
priori preferred in the bulk. Yet, as seen before, the numerical estimation of the
norm of the Fourier transform averaged over z exhibits a maximum, whose location
depends on the radial position (see figure 7). This focalization was also observed
in a librating cylinder (Sauret et al. 2012) for a turbulent patch localized all along
the outer boundary and for the generation of internal waves from a turbulent layer
(Dohan & Sutherland 2005; Taylor & Sarkar 2007). In this latter case, the observed
frequency selection was attributed to the influence of viscosity. Adapting their study to
inertial waves, the viscous attenuation of a given wave with axial wavenumber kz and
frequency ω propagating in the r-direction is given by

exp
[
− 16E|kz|3
ω4
√

4− ω2
(1− r)

]
, (4.10)

which, according to the typical values considered here (see e.g. figure 3c), induces a
change in the wave amplitude of less than 0.01 %. Viscous attenuation can clearly not
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account for the frequency selection shown here, and this will be even more true in
planetary applications, where E < 10−12. In the present case, the finite size and the
shape of the spherical container are actually responsible for the selection of preferred
frequencies. Indeed, using the numerically determined values of the source functions
f and g, we can average over z the signal given by the relation (4.7) at a constant r
between the boundaries of the sphere z=±√1− r2, which gives

〈ûr(r, ω)〉z ∝
(

erf
[
(1− r) |kr/kz|

σ
√

2

]
− erf

[
(1− r) |kr/kz| −

√
1− r2

σ
√

2

])
ĝ(ω), (4.11)

where erf is the Gauss error function and |kr/kz| =
√

4/ω2 − 1 (see (4.4)).
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Figure 7 shows the comparison between numerical and analytical results at different
radial positions. It exhibits reasonable agreement, taking into account the strong
assumptions used in the analytical model. Starting from an excitation localized at
the equator and with a flat spectrum between [0, 2], energy is emitted in all directions.
But because of geometrical constraints, energy propagation along or close to the
direction of the axis of rotation, corresponding to low-frequency waves, is more
prevented than propagation along the equator, corresponding to frequencies close to
2. This geometrical frequency selection has a growing importance while going further
away from the source, i.e. while r decreases. Hence, while r decreases, selected
frequencies are more and more localized close to 2. Note also that the mismatch
between the numerical results and the analytical model close to ω ∼ 2.0 can be
explained by our assumptions. The analytical model is based on a flat excited spectrum
in the range ω ∈ [0, 2] only. In the numerical simulation, a peak around the frequency
ω = ωlib = 2.1 is also present, associated with the spin-up and spin-down close to the
outer boundary at each libration cycle (see also figure 3).

5. Conclusion

In conclusion, this work presents the first evidence of spontaneous generation of
inertial waves from a localized patch of turbulence in a rotating container and
of the related mechanism of frequency selection by geometrical constraints. These
processes are illustrated here by a simple two-dimensional analytical model and by
simple axisymmetric simulations of a librating sphere. This configuration is especially
interesting for planetary applications: celestial bodies such as Io and Europa are
indeed thought to present turbulence around their equator driven by libration (Noir
et al. 2009). The present mechanism may then participate in the explanation of their
preferred eigenmodes of vibration. More generally, we expect the processes presented
here to be fully generic to any source of turbulence and to any type of container.
A difference must be made between localized and extended patches, as illustrated by
the libration of a sphere and of a cylinder for inertial waves. Following the study of
Townsend (1966) for internal waves (see also Taylor & Sarkar 2007), the resulting
signal for an extended source is equal to the superposition of the effects of random
localized sources in space and time. In all cases, a focusing of energy at a given
frequency is thus to be expected.
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Ganymede, and Callisto with an ocean for non-Keplerian orbit. A & A 527, A118.
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