
Geophysical Research Letters

RESEARCH LETTER
10.1002/2014GL061434

Key Points:
• Experimental investigation of inertial

waves excited in liquid cores
• Shear instability induced by the

resonance of inertial waves
• Relevance in many terrestrial planets

Correspondence to:
M. Le Bars,
lebars@irphe.univ-mrs.fr

Citation:
Sauret, A., M. Le Bars, and P. Le Gal
(2014), Tide-driven shear instability in
planetary liquid cores, Geophys. Res.
Lett., 41, doi:10.1002/2014GL061434.

Received 6 AUG 2014

Accepted 12 AUG 2014

Accepted article online 25 AUG 2014

Tide-driven shear instability in planetary liquid cores
Alban Sauret1,2, Michael Le Bars1, and Patrice Le Gal1

1Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, Marseille, France, 2Department of Mechanical and
Aerospace Engineering, Princeton University, Princeton, New Jersey, USA

Abstract We present an experimental study on the shear instability driven by tidal forcing in a model
planetary liquid core. The experimental setup consists of a water-filled deformable sphere rotating around
its axis and subjected to an elliptical forcing. At resonant forcing frequencies, the nonlinear self-interaction
of the excited inertial mode drives an intense and localized axisymmetric jet. The jet becomes unstable
at low Ekman number because of a shear instability. Using particle image velocimetry measurements,
we derive a semiempirical scaling law that captures the instability threshold of the shear instability. This
mechanism is fully relevant to planetary systems, where it constitutes a new route to generate turbulence in
their liquid cores.

1. Introduction

Rotation of planets is always perturbed by gravitational interactions with their companions that generate
perturbations of their shape, of the direction of their rotational vector, and of their rotation rate [see, e.g.,
Olson, 2013]. Those perturbations correspond to tidal distortions [Malkus, 1989; Cébron et al., 2012, 2013],
precession/nutation motions [Malkus, 1968; Noir et al., 2001], and librations [Noir et al., 2009; Busse, 2010;
Sauret and Le Dizès, 2013], respectively. The mechanical forcings are generally of small amplitude. Yet they
can be of critical importance in planetary cores as they can drive inertial modes, zonal flows, and instabili-
ties, generating turbulence [e.g., Aldridge and Lumb, 1987; Kuhn et al., 2000; Morize et al., 2010; Sauret et al.,
2010; Zhang et al., 2011; Sauret et al., 2012; Cébron et al., 2012b; Noir et al., 2012; Sauret et al., 2013]. Flows
driven by mechanical forcings can thus provide alternative mechanisms to the standard convective mod-
els [see, e.g., Glatzmaier and Roberts, 1995; Aurnou and Olson, 2001] in rationalizing the variety of magnetic
fields observed in planets of our solar system and in extrasolar ones. For instance, mechanical forcings pro-
vide plausible scenarios to explain the Moon’s past magnetic field [Le Bars et al., 2011; Dwyer et al., 2011].
In this letter, we show that the localized nonlinear flow excited by a tidal forcing at a resonant frequency
can become unstable following a shear instability that generates turbulence. We study experimentally the
consequences of an elliptical deformation on a rotating sphere filled with water. This experimental system
is a model of a tidally deformed liquid core. We note that other harmonic forcings such as precession and
libration are expected to excite the same generic mechanism [see, e.g., Vanyo et al., 1995].

2. Inertial Modes and Zonal Flow

So-called inertial modes associated with the Coriolis force develop in any enclosed rotating fluid. These
modes are usually damped by viscosity, but they can be excited by harmonic forcings whose frequencies
range between plus and minus twice the spin frequency [Greenspan, 1968]. Recent numerical simulations
[Tilgner, 2007] and laboratory experiments [Morize et al., 2010] have considered the inertial modes excited
by tidal deformations in a spherical container. They show that the ratio of the rotation rate of the tides (i.e.,
the orbital rotation rate of the companion) to the rotation rate of the considered planet determines the iner-
tial modes excited in the system. The base flow driven by tidal distortion has an azimuthal wave number
m = 2. This base flow generates a flow of azimuthal wave number m = 4 and an axisymmetric contribution
m = 0, the so-called zonal flow, through nonlinear self-interaction. Experimentally, Morize et al. [2010] have
shown that the axisymmetric flow generated in the bulk is small except when the frequency of the forcing
matches an eigenmode of the sphere. In this situation, a localized intense geostrophic zonal jet appears in
the bulk. Their experiments exhibit a clear dependence of the associated maximal azimuthal velocity on
the square of the tidal amplitude. The purpose of this paper is to further investigate this dynamics when
decreasing the Ekman number, i.e., the ratio of the viscous to the Coriolis forces, which is very small in
planetary cores.
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Figure 1. (a) Picture of the experimental setup. (b) Horizontal velocity field in the equatorial plane measured in the rotating frame for 𝜀 = 0.045, E = 1.25 × 10−5,
and ΩR = 0.384. The center of the sphere is at (0, 0). (c) Top view of the flow structure in the equatorial plane with Kalliroscope flakes corresponding to the
unstable case in Figure 1d. The blue cross is the center of the sphere. The red arrow points to a stable shear region whereas the green arrow points to an unstable
shear region. (d) Bulk visualization from the side of stable (top: 𝜀 = 0.045 ) and unstable (bottom: 𝜀 = 0.075) flows, respectively, for E = 1.25×10−5 and ΩR = 0.384.

3. Experimental Setup

The experimental setup (Figure 1a) consists of a hollow sphere of radius R = 10 cm and cast in a silicone
gel that is both deformable and transparent to allow direct flow visualization [see also Le Bars et al., 2010;
Sauret et al., 2010; Morize et al., 2010]. The sphere is filled with water (kinematic viscosity 𝜈 = 10−6m2/s) and
set in rotation about its vertical axis (Oz) at a constant angular velocity in the range Ωspin ∈ [2; 19] rad⋅s−1

with a accuracy of ±0.3%. In addition, to generate a tidal deformation on the rotating sphere, two vertical
cylindrical rollers are applied symmetrically on the sphere and rotate independently at a constant angular
velocity Ωorb ∈ [2; 12] rad⋅s−1 with a accuracy of ±0.3%. Our system is fully described by three dimension-
less parameters. The Ekman number E = 𝜈∕(Ωspin R2) is the ratio of viscous to Coriolis effects. In the present
study, E varies between 5× 10−6 and 8× 10−5. We also define the ratio of the orbital to the spin angular rota-
tion rate, ΩR = Ωorb∕Ωspin, referred to as the forcing frequency, and the amplitude of the tidal deformation
𝜀 = 0.02 − 0.09 ± 3 × 10−3, that is equal to twice the tidal bulge divided by R.

To obtain a quantitative insight into the flow generated by the tidal forcing, we perform measurements
using a particle image velocimetry (PIV) system corotating with the sphere (see Morize et al. [2010] for
details). Morize et al. [2010] calculated the mean zonal flow by taking one picture per rotation. Continuous
recording of the flow at 24 frames per second, PIV processing the successive frames, and averaging the
obtained velocity field over more than 70 rotations allow us to increase the accuracy of the measurement.
To conduct this measurement, we use a miniature wireless camera (Video Camera of dimensions
2 cm × 2 cm, and of resolution 576×768 pixels, 24 frames per second) that rotates at constant angular veloc-
ity Ωspin and measures the flow in the equatorial plane from above through the transparent top surface. The
PIV particles of diameter 100 μm are illuminated by a laser sheet of thickness 3 mm, produced by a continu-
ous laser (8 W). We start the measurements after the transient spin-up, typically 10 min after the onset of the
rotation. Figure 1b shows a typical velocity field measured in the equatorial plane at a resonant forcing. The
presence and stability of shear layers is also observed through qualitative visualizations using anisotropic
particles (Kalliroscope flakes) illuminated in the equatorial plane (see Figure 1c) or from the side (Figure 1d).
This qualitative approach permits to determine the threshold of the instability.

4. Shear Instability

The influence of the forcing frequency on the amplitude of the mean zonal flow has been characterized
by Morize et al. [2010]. They have shown that the amplitude of the mean zonal flow remains small except
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Figure 2. (a) Maximal azimuthal velocity associated to the mean zonal flow rescaled by Ωspin R for E = 9.46 × 10−6 and
ΩR = 0.384. The dashed line shows the scaling 𝜖2. (b) Maximal azimuthal velocity associated to the mean zonal flow
rescaled by Ωspin R𝜀2 for 𝜀 = 0.045 and ΩR = 0.384 (red squares) and ΩR = 0.178 (blue circles). The dashed lines show
the best fits of slope E−0.64±0.08 and E−2.1±0.4, respectively. Note that in the previous study by Morize et al. [2010], the
scaling E−3∕10 was mentioned for the resonance at ΩR = 0.38: the resonance band of a given inertial mode in ΩR being
very thin around its resonance frequency, a small change in the excitation frequency apparently leads to rapid changes
in the scaling behavior of the zonal jet.

when the orbital frequency resonates with an eigenmode of the sphere. In the following we mainly con-
sider the resonance at the forcing frequency ΩR = 0.384, which is the easiest excitable mode in our system
(Figure 1b) and allows the most accurate measurements of the corresponding velocity field. We note that
other eigenmodes of the sphere can also be excited at Ekman numbers accessible to our experimental
setup, for instance at ΩR = 0.178. Figure 2 shows the influence of the dimensionless parameters on the
internal zonal jet. We plot the evolution of the maximum amplitude of the zonal flow as a function of the
amplitude of the tidal deformation 𝜀 in Figure 2a. As expected the amplitude of the mean zonal flow scales
as the square of the deformation (𝜀2), which is consistent with the results previously obtained by Morize et
al. [2010]. However, we observe a localized change in the general trend of the curve between 𝜀 = 0.045 and
𝜀 = 0.055 for an Ekman number E = 9.46 × 10−6. We shall see in the following that at this Ekman number
and for this particular mode, 𝜀 ≃ 0.045 corresponds to the threshold for destabilization of the jet by a shear
instability that modifies the structure of the flow.

We then study the dependence of the maximum azimuthal velocity associated with the mean zonal flow as
a function of the Ekman number E for a fixed tidal deformation 𝜀 = 0.045 and for a forcing frequency ΩR =
0.384 (see Figure 2b). We note that the velocity of the zonal flow for this mode is proportional to E−0.64±0.08

and emphasize that this exponent cannot be generalized to the other forced modes, at least for the Ekman
numbers considered in our experiments (E > 5 × 10−6). For example, Figure 2b also shows the velocity of
the zonal flow for ΩR = 0.178, which is then proportional to E−2.1±0.4. We expect this change of exponent
to be due to finite Ekman number effects since the asymptotic regime for inertial modes is only reached
for E < 10−8 [Rieutord and Valdettaro, 2010]. This feature was also observed numerically in a spherical shell
for a tidal forcing [Favier et al., 2014]. However, Figure 2b shows that for both resonant forcing frequencies,
the measured zonal flow saturates at low Ekman number. This saturation coincides with the destabilization
of the geostrophic flow observed in experiments with Kalliroscope particles (see Figure 1d). We expect this
mechanism of flow destabilization at low Ekman number to be generic to any resonant forcing frequency.

A top view of the flow patterns in the equatorial plane is shown in Figure 1c and illustrates the presence of
a nonaxisymmetric instability reminiscent of the one observed in differentially rotating spherical shell by
Schaeffer and Cardin [2005]. We have systematically explored the transition between stable and unstable
regimes using such type of experiments. We define the critical deformation 𝜀c as the minimum value of 𝜀 for
which the flow is unstable at a given Ekman number. The experimental results are reported in Figure 3 for
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Figure 3. Stability threshold of the inner band for the mode excited
at ΩR = 0.384. The red squares are the experimental results with
the error bars. The black dashed line shows the best fit of the exper-
imental points 𝜀c ∼ E0.68. The red line shows the slope of the
semiempirical scaling law based on a viscous damping, 𝜀c ∼ E0.72,
and the blue line the slope of the semiempirical scaling law based
on a beta effect, 𝜀c ∼ E0.52.

the zonal jet located around r ∼ 0.4 at the
forcing frequency ΩR = 0.384. The best fit of
the experimental measurements gives the
following threshold:

𝜀c ∝ E0.68±0.11, (1)

where the limited range of explored Ekman
numbers implies a rather large uncertainty
on the experimentally determined expo-
nent. This scaling law can be rationalized
using a simplified model presented in the
next paragraph.

5. Semiempirical Scaling Law

The structure of the flow shown in Figure 1c
is typical of the patterns induced by a shear
instability in a rotating flow [Kuo, 1949;

Busse, 1968; Fruh and Read, 1999; Hollerbach, 2003; Schaeffer and Cardin, 2005; Guervilly et al., 2012]. This
instability is generated by rapid changes of the local rotation rate over a short distance. Previous authors
estimated that an instability occurs when the local Rossby number, Ro = ΔΩ∕Ωspin reaches a critical value
Ro,c, where ΔΩ stands for the change in the rotation rate in the jet. To determine the instability threshold,
we consider the two extreme cases introduced by Schaeffer and Cardin [2005] for the “split sphere” and the
“differential inner core rotation” configurations. In all three configurations, the source of the instability is
the shear, measured by Ro∕(Δr)2, where Δr is the thickness of the shear layer. The threshold is determined
by balancing this source term with the damping term. In a spherical geometry, the damping is dominated
either by the viscous dissipation scaling as E m3, where m is the critical wave number taken as m ∼ (Δr)−1,
or by the 𝛽 effect related to the change of depth of the fluid column as a function of the distance r from the
axis, scaling as 𝛽 = r∕(1 − r2). We now need to estimate Ro and Δr as function of E and 𝜀 in our flow. The
shear layers considered in our configuration are generated by the nonlinear effects in the Ekman layer of the
oscillatory flow driven by the harmonic tidal forcing. The corresponding natural lengthscale in the sphere is
Δr ∼ E1∕5, as shown by Kerswell [1995] and validated in the closely related case of harmonic precession forc-
ing by Kida [2011]. Note in particular that this scaling is different from the one relevant for a Stewartson layer
[Stewartson, 1966], which applies to the split sphere and to the differential inner core rotation configurations
[Schaeffer and Cardin, 2005]. Note also that in the spherical shell, the relevant lengthscale for a shear layer
driven by an harmonic mechanical forcing is Δr ∼ E1∕3 [Kerswell, 1995; Tilgner, 2007]. Regarding the Rossby
number, to the best of our knowledge, no analytical description of the amplitude of zonal jets induced by
a resonant forcing of inertial modes has been determined. We thus use the amplitude measured experi-
mentally as shown in Figure 2b, and obtain Ro ∼ 𝜀2 E−0.64±0.08, where ΔΩ = |Δu𝜙,2|∕r. Depending on the
main source of damping, two scaling laws for the shear instability threshold can then be derived: consider-
ing the viscous damping leads to 𝜀c ∼ E0.72±0.04, while considering the 𝛽 effect leads to 𝜀c ∼ E0.52±0.04. These
two scalings are compared with the experimental measurements in Figure 3. For this type of flow, in the
range of parameters explored by our setup and for the considered shear layer, the comparison between the
semiempirical scaling law and the best fitting experimental law suggests that the viscous effects dominate
over the curvature effect. This does not preclude that the 𝛽 effect may become predominant for shear layers
located at larger r and/or at smaller Ekman number, but this will have to be explored using another setup or
another method.

6. Discussions and Conclusions

At resonant frequencies, tidal forcings generate zonal flows that become unstable at small Ekman number
leading to turbulence. In the present experimental study, we characterize the destabilization of the mean
zonal flow for the most easily excited mode in our setup (ΩR = 0.384). We also observe the presence of
the same shear instability for other experimentally excitable resonances, for instance at ΩR = 0.178 for
which the critical deformation would scale as 𝜀c ∼ E1.45±0.2 considering the viscous damping (see previous
paragraph for detailed derivation). Future research will have to consider the presence of an inner core, as
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Table 1. Physical Characteristics Used for the Planetary Calculations
Presented in Figure 4a

Earth Primitive Earth Mars Venus Mercury

M (× 10−24 kg) 5.98 5.98 0.642 4.87 0.33
R (km) 6378 6378 3390 6051 2440
Tspin (days) 0.997 0.418 1.026 −243 58.6

Rcore∕R 0.55 0.55 0.44 0.17 0.8
E (×1014) 0.11 0.047 0.61 316 21
𝜀 (×107) 1.4 8.9 0.16 1.1 7.1

aTidal amplitudes are computed using the hydrostatic hypothesis.

the scaling of the zonal flow could then be different. But we expect that the presence of an inner core does
not modify the generic mechanism of the shear instability shown here nor its physical description; it should
only change the scaling law for the threshold. For instance, Tilgner [2007] shows numerically that in the shell,
the zonal flow varies as u𝜙,2 ∼ 𝜀2 E−3∕4, and the thickness of the shear layer over which the shear instability
appears is now proportional to Δr ∼ E1∕3 [see also Ogilvie, 2005; Rieutord and Valdettaro, 2010]. Using the
analytical description detailed in section 5, we obtain for the shell a scaling law of the critical deformation,
𝜀c ∼ E17∕24, which is valid for the two types of damping processes described above, i.e., viscous damping
and 𝛽 effect. Note that this exponent corresponds to a greater tendency toward flow destabilization when
compared to our experimental law equation (1).

In planets, the Ekman number is so small that any tidal forcing in the range of inertial frequencies may excite
a resonant mode. As a first step toward geophysical applications, let us extrapolate the experimental scal-
ing law (1), including its uncertainty on the scaling exponent, to planetary values of the Ekman number and
the tidal deformation. Note again that its exponent is determined experimentally for moderate values of the
Ekman number. But its exponent is the smallest one compared to the other cases discussed above, leading
to the most conservative estimate of the threshold. Relevant parameters are given in Table 1 and results are
reported in Figure 4. The generic mechanism shown here is susceptible to happen in telluric bodies of the
Solar System, where it would constitute an alternative route toward core turbulence. Based on the experi-
mental results presented above and acknowledging their limitations, the present Earth, Mercury, and Mars
are potentially unstable to the shear instability, and the early Earth and early Mars with its ancient moon
are unstable.

In conclusion, we have shown experimentally a new generic route toward turbulence in a rotating
spherical fluid layer subject to a harmonic mechanical forcing. Additional studies are now necessary
to fully evaluate the relevance of this process in planets. Among the open questions, we would like to

Figure 4. Stability of the zonal jet generated in liquid cores of planets
evaluated using the parameters of Table 1. The red squares are the
experimental results, the black dashed line of slope E0.68 represents
the best fit determined experimentally, and the grey zone takes into
account the uncertainty on the scaling exponent. The thick black line
is extracted from Arkani-Hamed [2009] and corresponds to the tides
generated by an ancient moon on Mars.

stress the following three. First,
systematic experiments and/or calcu-
lations at smaller Ekman number and
in presence of an inner core are now
needed to provide a complete descrip-
tion of the generated turbulence and
in particular to determine the spatial
extension of the turbulent zone and the
typical power spectrum. Then, it would
also be interesting to evaluate the inter-
action of the process shown here with
the other ingredients potentially present
in planetary cores, such as a convec-
tive flow or a magnetic field. Finally, the
possibility to generate a dynamo using
such a shear layer instability mecha-
nism remains a stimulating challenge
[see, e.g., McWilliams, 2012; Zimmerman
et al., 2014].
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