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We investigate the bulldozing motion of a granular sandpile driven forwards by
a vertical plate. The problem is set up in the laboratory by emplacing the pile
on a table rotating underneath a stationary plate; the continual circulation of the
bulldozed material allows the dynamics to be explored over relatively long times, and
the variation of the velocity with radius permits one to explore the dependence on
bulldozing speed within a single experiment. We measure the time-dependent surface
shape of the dune for a range of rotation rates, initial volumes and radial positions,
for four granular materials, ranging from glass spheres to irregularly shaped sand.
The evolution of the dune can be separated into two phases: a rapid initial adjustment
to a state of quasi-steady avalanching perpendicular to the blade, followed by a much
slower phase of lateral spreading and radial migration. The quasi-steady avalanching
sets up a well-defined perpendicular profile with a nearly constant slope. This profile
can be scaled by the depth against the bulldozer to collapse data from different times,
radial positions and experiments onto common ‘master curves’ that are characteristic
of the granular material and depend on the local Froude number. The lateral profile
of the dune along the face of the bulldozer varies more gradually with radial position,
and evolves by slow lateral spreading. The spreading is asymmetrical, with the
inward progress of the dune eventually arrested and its bulk migrating to larger radii.
A one-dimensional depth-averaged model recovers the nearly linear perpendicular
profile of the dune, but does not capture the finer nonlinear details of the master
curves. A two-dimensional version of the model leads to an advection–diffusion
equation that reproduces the lateral spreading and radial migration. Simulations
using the discrete element method reproduce in more quantitative detail many of the
experimental findings and furnish further insight into the flow dynamics.
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1. Introduction
The dynamics of dense granular media plays a key role in a variety of engineering

and geophysical flows involving the transport of materials such as cereals, rocks
or sand. Many recent studies have focused on the free-surface flow of a granular
material (Savage & Hutter 1991; Forterre & Pouliquen 2008; Andreotti, Forterre
& Pouliquen 2013), with particular interest in steady flows down inclines (see e.g.
Pouliquen 1999a,b; Holyoake & McElwaine 2012) or in the collapse of a granular
column (Lajeunesse, Mangeney-Castelnau & Vilotte 2004; Balmforth & Kerswell
2005; Lacaze & Kerswell 2009; Lagrée, Staron & Popinet 2011). In conjunction with
studies of granular flow in shear cells and chutes, this work has significantly advanced
our understanding and modelling of the dynamics of granular media. Nevertheless, a
general theory continues to be elusive, and it remains essential to consider different
configurations for granular flow that are readily set up in the laboratory and explored
theoretically.

In this paper, we explore the dense granular flow generated by bulldozing a pile
of grains over a level horizontal surface. The problem can be conveniently set up in
the laboratory by depositing the pile on a table rotating underneath a stationary plate
(with the bottom of the blade held at the same height as the underlying surface). The
use of this rotating arrangement, instead of a blade in rectilinear motion, allows the
system to be recirculated so that the dynamics can be observed over relatively long
times. In addition, the variation of the velocity with radial position along the blade
allows for a richer dynamics at the same time as enabling one to study a range of
bulldozing speeds all within a single experiment. One of our aims is to provide a first
experimental study of this ‘rotating bulldozer’ and to determine the key features of the
dynamics. With this in mind, we characterize the motion and shape of the dune built
up against the blade for a range of rotation rates, dune volumes and initial positions,
and for a number of different granular media, ranging from glass ballotini to coarse
sand and grit.

A second aim is to complement the experiments with theory. For this task, and
following many conventional approaches to granular flow problems with a free
surface (Forterre & Pouliquen 2008; Andreotti et al. 2013), we consider a relatively
crude depth-averaged model that treats the granular medium as a continuum. Such
an approach has several limitations, not least of which are the requirement that
the flow be shallow and the need to incorporate a prescription for the frictional
internal stresses. We therefore supplement the depth-averaged model with simulations
at the particle level using the discrete element method (DEM), which is currently
the method of choice for many complex granular flows (Cundall & Strack 1979;
Börzsönyi, Ecke & McElwaine 2009). DEM simulations offer a powerful insight
into granular flow dynamics, as idealized computations can be performed without
the complications associated with laboratory experiments, and all quantities can be
observed non-intrusively. The main drawbacks lie in the unrealistic contact laws they
employ and the limited number and geometric description of the particles. Despite
these drawbacks, satisfying agreement has been obtained with a number of existing
granular experiments.

Surprisingly, there are relatively few previous laboratory studies of granular
bulldozers, despite the classical early work by Bagnold (1966) who considered
the two-dimensional bulldozing of a layer of sand of constant thickness. Because
the bulldozer was held below the sand surface and pulled at a fixed force, the dune
volume increased with time and episodic avalanching caused the bulldozer to advance
unsteadily. Bagnold’s laboratory experiments provided a qualitative picture of the
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shape and the flow in the dune. However, the experiments could not reach any steady
state and no quantitative measurements of the shape of the dune or the flow velocity
were provided. More recently, experimental studies of ‘singing’ or ‘booming’ sand
(Douady et al. 2006; Andreotti 2012) have used rotating granular bulldozers to create
avalanches. However, the purpose of these experiments was to explore sound emission
by the granular flow, and the dynamical features of the flow itself were not the main
concern and were not therefore documented in detail.

The dynamics of granular bulldozers is also closely connected with the problem
of washboard patterns on dirt roads. Here, a plough or wheel is driven over a
granular surface; the dynamical interplay between the bulldozed dune and the plough
allows for an instability when the wheel or the blade is free to move vertically, the
oscillations of the plough subsequently imprinting the washboard pattern (Mather
1963; Taberlet, Morris & McElwaine 2007; Bitbol et al. 2009; Percier et al. 2011;
Hewitt, Balmforth & McElwaine 2012; Percier, Manneville & Taberlet 2013). In
order to provide lift, however, the surface of the plough is inclined, a feature that,
together with the vertical motion of the plough, sets the washboard experiments apart
from those that we document here (where the plough is a fixed vertical blade). Other
recent related experiments have studied the drag on a plate pulled through a granular
medium (Geng & Behringer 2005; Gravish, Umbanhowar & Goldman 2010; Ding,
Gravish & Goldman 2011; Guo et al. 2012; Guillard, Forterre & Pouliquen 2013);
these studies were interested primarily in the drag force on the plate, and again not
the flow within the granular medium.

We organize the paper as follows. In § 2 we describe in detail the experimental
apparatus; § 3 summarizes the results. A description of the depth-averaged modelling
and discrete element simulations appears in § 4. Finally, in § 5, we discuss our results
and draw some conclusions, in particular highlighting open questions and avenues for
future research.

2. Experimental set-up and procedure
2.1. The rotating bulldozer

The experimental apparatus, shown in figure 1(a), consisted of a rotating table of
2.2 m diameter above which a blade was fixed in the laboratory frame. The table
could be rotated at a fixed rate, Ω , in the range of 0.05–2 rad s−1, to a precision of
a fraction of a per cent. We used a wooden beam spanning the table for the bulldozer
blade. Both the beam and the table were coated with sandpaper to prevent particles
from sliding over their surfaces. We orientated the blade vertically at a fixed height
of 15± 2 mm above the table.

To begin each experiment, we first poured the granular material onto the rotating
table, filling up the gap underneath the blade and ploughing out a layer of constant
thickness and compaction. The vertical separation of the blade from the bed avoided
particles becoming jammed and crushed between the blade and the table. Although
the thickness of this pre-existing layer adds to the parameters of the problem, we
ran additional experiments to check that variations in its depth over the range
10–30 mm did not significantly change the observed phenomenology at the rotation
rate, Ω = 0.05 rad s−1. The DEM simulations in § 4.3 offer further gauging of the
effect of the underlying layer.

Once the pre-existing layer was in place, we stopped the table, and then slowly
poured an additional mass of grains onto the layer at a selected position. This created
an initial pile in the form of a nearly conical mound of given mass m, with a slope
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FIGURE 1. (Colour online) (a) Photograph of the experimental set-up. (b) Photograph
of the four granular materials. From left and clockwise: aquarium sand (d = 0.9 mm);
spherical glass beads (d = 1 mm); coarse grit (d = 3 mm); and fine glass beads (d =
0.1 mm).

given by the static angle of repose of the particular granular material and centred at
some initial radius r0 from the centre of the table. For the present study, we used r0=
15, 25 or 35 cm, and masses of m=250, 500, 750 and 1000 g. The table was then set
in motion again, accelerating to a prescribed rotation rate, Ω , with equivalent rotation
period Trot= 2π/Ω , in typically less than 2 s (well before the pile hits the blade). The
collision of the pile and the subsequent dynamics then took place at constant rotation
rate.

2.2. Granular materials
In this study, we considered four different granular media, two of irregular shape and
two spherical, as shown in figure 1(b):

(i) aquarium sand (left; manufacturer PetCo);
(ii) coarse grit (right);

(iii) 1 mm diameter glass beads (top; A-100 from Potters Industries);
(iv) 0.1 mm diameter glass beads (bottom; no. 8 from Kramer Industries).

The mean particle size, or their ranges, for all of the granular materials are
summarized in table 1.

Granular materials are often characterized by static and dynamic angles of repose,
although these have no universally agreed definitions. To estimate these for each of
our four materials, we half-filled a drum of inside diameter 138 mm and axial length
93 cm. Rotating the drum at low speeds led to episodic avalanching punctuated
by periods of rigid body rotation (the so-called ‘slumping’ regime; e.g. GDR Midi
2004). By fitting a line to the free surface, we then measured the average angle at
which avalanches started, θstart, and ended, θstop. Rotation of the drum at faster speeds
eventually precipitated continuous avalanching (the ‘rolling’ regime) at a dynamic
angle of repose, θc. For the glass ballotini and sand, the free surface remained
fairly linear even at the higher rotation rates. However, the surface of the grit was
significantly nonlinear during continuous avalanching, indicating that θc only roughly
characterizes the slope of the entire surface for this material. These angles are listed
in table 1 for the four granular materials, along with the experimentally observed
angle of the avalanching dune θM (discussed in more detail in § 3.2). The data are
similar to cruder measurements that we made of the surface slopes of slowly built
up sandpiles (cf. Börzsönyi, Halsey & Ecke 2008).
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d (mm) ρ (g cm−3) θstart θstop θc θM

Ballotini 1 ± 0.2 1.48–1.61 24.9± 0.7◦ 22.9± 0.5◦ 23.7± 0.6◦ 23.4± 0.5◦
Ballotini 0.12± 0.03 1.50–1.60 26.6± 0.7◦ 23.8± 0.6◦ 25.3± 0.5◦ 23.5± 0.5◦
Aquarium sand 0.9± 0.15 1.50–1.67 37.9± 1.3◦ 33.7± 1.1◦ 36.1± 1.0◦ 36.1± 0.5◦
Coarse grit 3 ± 0.9 1.46–1.64 39.2± 0.9◦ 33.1± 0.8◦ 36.3± 1.5◦ 35.5± 0.5◦

TABLE 1. Mean particle diameter d, apparent density ρ and characteristic angles for the
four different granular media. The mean diameters of the aquarium sand and coarse grit
particles have been estimated by direct visualization and fitting of a Gaussian distribution
to the recorded particle sizes; the quoted error is the standard deviation (see Sauret (2012)
for more details). For the ballotini, we quote the particle range and its median as provided
by the producers. The apparent densities are determined by measuring the mass of one
litre of each of the materials either with loose packing or after compaction. Here, θstart
and θstop denote the starting and stopping angles for avalanches in a slowly rotating drum;
θc is the dynamic avalanching angle at the initiation of the continuous-flow regime in the
same drum rotated at higher speed; θM is the angle of the low-rotation-rate master curves
observed in the bulldozing experiments, as described in more detail in § 3.2.

2.3. Diagnostic method: calibration and topography of the dune
To describe the geometry of the bulldozed dune, we use the Cartesian coordinate
system (x, y, z) illustrated in figure 2. The axes are orientated so that the z-axis points
vertically upwards with z=0 corresponding to the base of the bulldozer (or the surface
of the underlying granular layer), the x-axis is perpendicular to the bulldozer blade and
y runs along its front face. The surface profile of the dune, z= h(x, y, t), is equivalent
to the local depth of material above the pre-existing granular layer. Note that, because
of the finite thickness of the blade and the way that we positioned the wooden beam,
the origin of the coordinate system does not coincide with the rotation axis of the
table. Instead, the origin is offset from the centre of the rotating table and is positioned
at the closest point along the blade.

To determine the profile of a dune, we projected a laser line onto its surface,
measuring the deflection away from the pre-existing layer due to that topography,
as shown in figure 2(a,b) (cf. Pouliquen 1999a). The laser line was orientated
perpendicular to the blade, and fixed on a traverse such that the laser could be swept
along the length of the blade. The perpendicular profile (i.e. in an (x, z)-plane) of
the dune could then be measured at various lateral (radial) positions along the blade.
However, most of our perpendicular profile measurements were taken at the lateral
location y0 ≈ r0 corresponding to the position where the centre of the initial pile hits
the blade. To deal with effects of perspective and projection, we first performed a
calibration using images of square boards, suitably positioned in the field of view of
the camera. (See Sauret (2012) for more details.) This exercise furnished the proper
map between the deflections measured in the pixels of the camera and the actual
distances in three-dimensional space. Figure 2(c) shows a typical example of the
reconstruction of the entire topography of a dune.

3. Experimental results
3.1. Phenomenology

A collision between a conical pile of aquarium sand and the blade is illustrated in
figure 3 and documented further in the videos available as supplementary material
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FIGURE 2. (Colour online) The coordinate system and laser measurement technique
used to characterize the surface of the bulldozed pile: a Cartesian coordinate system is
orientated so that the z-axis points vertically upwards, x is perpendicular to the bulldozer
blade and y runs laterally along its front face. (a) Without topography, the laser line (red)
runs along the top of the uniform underlying layer and defines a section in x at z = 0
for a particular position in y; the (x, z) plane at this location in y is shown. The dashed
semicircle indicates the radial position r0 of the centre of the initial pile. (b) When the
topography of the dune cuts through the line of the laser, the deviation from the original
straight line can be used to measure the elevation of the surface, z = h(x, y, t). (c) The
reconstructed dune profile for a mass m= 1000 g of 1 mm glass beads, with rotation rate
Ω = 0.05 rad s−1 and initial position r0 = 25 cm.

at http://dx.doi.org/10.1017/jfm.2014.181. The bulldozing dynamics takes place in
two phases. The collision prompts a rapid initial rearrangement of the granular
material into an avalanching dune driven primarily perpendicular to the blade
(figure 3b,c). This avalanching state becomes quasi-steady in its perpendicular motion,
but subsequently spreads laterally over a longer time scale (figure 3d–f ). The two
phases are evident in figure 4, which plots time series of the depth of the dune at
the position y0 along the blade corresponding to the initial radius of the pile, i.e.
h(0, y = r0, t) ≡ H(y = r0, t), for a number of different experiments. Note that we
fix the origin of time, t= 0, as the moment when the edge of the initial pile makes
contact with the blade of the bulldozer.

The rapid adjustment phase spans a time Ti of the order of tens of seconds, or a
fraction of the rotation period. This time scale can be rationalized in terms of the

http://dx.doi.org/10.1017/jfm.2014.181
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FIGURE 3. (Colour online) Successive pictures of the bulldozed dune from a side view
(left) and a front view (right) for r0 = 25 cm, Ω = 0.05 rad s−1 and m = 1000 g. The
times of the snapshots are (a) t/Trot = 0, (b) 0.032, (c) 0.064, (d) 0.127, (e) 0.24 and (f )
0.64. In all pictures, the laser line highlights the topography of the dune at the location
y0. Videos of these experiments are available as supplementary material.

characteristic length of time required to reorganize a pile of initial radius R0 by flow
with speed U = r0Ω , Ti ∼ R0/(r0Ω) ≈ 12 s (for R0 ≈ 15 cm, r0 ≈ 25 cm and Ω =
0.05 rad s−1), which is indicated in figure 4(a,b). Lateral spreading, on the other hand,
takes place over a time scale Tq spanning multiple rotations, suggesting that Tq =
O(Trot), which is consistent with the predictions of the depth-averaged model presented
below in § 3.3.

3.2. Dynamics perpendicular to the blade
We first consider the quasi-steady perpendicular profiles of the avalanching dunes at
fixed lateral position y. Profiles from two different experiments with the aquarium
sand and similar initial conditions and rotation rate (r0 = 25 cm, m= 1 kg and Ω =
0.05 rad s−1) are shown in figure 5. The two earliest profiles show slight variations
due to minor differences in the initial piles: although the mass is fixed, particles can
be packed slightly differently (see e.g. Jaeger, Nagel & Behringer 1996) and the exact
position of the initial pile can vary by a few millimetres. These variations become
less significant during the initial rapid adjustment into the quasi-steady bulldozed dune,
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FIGURE 4. (Colour online) Time series of the depth of the dune against the blade,
h(0, y0, t)≡ H(y0, t) at y= y0 ≈ r0 = 25 cm, with Ω = 0.05 rad s−1, for (a) 1 mm glass
beads with varying mass (m = 250, 500, 750 and 1000 g), with the arrow indicating
decreasing initial mass and (b) the four granular materials with fixed mass m = 1000 g
(grit, thick line; aquarium sand, dashed-dotted line; 1 mm glass beads, dashed line;
0.1 mm glass beads, solid line). The vertical lines at t = 12 s indicate the rough
switchover from the rapid initial adjustment (labelled ‘RA’) to the slower lateral spreading
phase (‘SLS’).
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FIGURE 5. (Colour online) Profiles of two bulldozed dunes at y= 25 cm for initial piles
of m = 1 kg of 1 mm glass beads located at r0 = 25 cm, with Ω = 0.05 rad s−1. The
profiles are taken every 10 s, starting 15 s after the pile hits the blade, with the direction
of increasing time shown by the arrow. The profiles for the two distinct experiments are
shown by dashed and solid lines.

leaving profiles that agree to within the measurement errors of the laser system, which
are approximately 2 mm. The profiles then slowly reduce in height over the time scale
Tq due to lateral spreading. Thus, the evolving topography of the dune is reproducible
in the experiments.

We plot quasi-steady profiles for 1 mm glass beads in figure 6(a) for an initial mass
m= 1000 g. The slope of the dune remains nearly constant over the duration of the
period shown, even though the perpendicular area falls by a factor of about two due
to lateral spreading. Interestingly, when we scale h(x, y, t) and x by the depth at the
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FIGURE 6. (Colour online) Perpendicular profiles at y= y0 for a bulldozed dune of 1 mm
glass beads with Ω = 0.05 rad s−1, y0 ≈ r0 = 25 cm and m = 1000 g. Panel (a) shows
plots of dimensional dune profiles, h(x, y0, t), against x; the profiles decay with time and
are measured every 8 s. Panel (b) shows the scaled profiles, h(x, y0, t)/H(y0, t) against
x/H(y0, t), where H(y, t) = h(x = 0, y, t) is the depth against the blade. The dotted line
shows the local slope at x= 0 and the dashed line is the local slope at the flow front (as
h→ 0).

blade, h(x= 0, y, t)≡H(y, t), all the profiles collapse onto a common curve, as shown
in figure 6(b). To leading order, this ‘master curve’ is linear, but flattens out slightly
at the blade as x→ 0 and steepens up near the front of the dune as h→ 0.

Figure 7 shows master curves (constructed by averaging between 10 and 15 profiles
taken every 4 s after the dune converges to its quasi-steady state) for our four granular
materials with Ω = 0.05 rad s−1, r0 = 25 cm and m= 1000 g. In the figure, the grey
band indicates the standard deviation of the profiles about the average. For the
glass beads, the profiles all collapse closely to the master curve (the corresponding
grey bands are relatively thin), while there are more significant variations about the
average for the irregularly shaped sand and grit particles. The dashed lines in the
figure indicate the leading-order slopes of the master curves, obtained by linearly
interpolating between the intersection of the master curve with the blade and the
front of the dune. The angles corresponding to these slopes, which we denote by
θM, are similar to the dynamic avalanching angles θc measured in the rotating drum,
as reported in table 1. Although the master curves are mostly linear, there is some
curvature to these profiles, particularly for the glass ballotini, suggesting an interesting
effect of particle shape.

In figure 8(a–d), we plot master curves constructed from experiments with varying
initial mass m and radial position r0, for both 1 mm glass beads and aquarium sand.
For each material, the various experiments collapse onto the same master curve.
Similarly, when we take measurements of the perpendicular profiles of the bulldozed
dunes at different radial positions y along the blade, we also recover a common
master curve. Only when we significantly speed up the rotation of the table do we
observe any change in the characteristic structure of the master curves. As illustrated
in figure 9(a,b), when the angular velocity Ω is increased, the curves become more
nonlinear, somewhat similarly to the fashion in which the surface of flow in granular
drums develops a characteristic ‘S-shape’ (GDR Midi 2004; Taberlet, Richard &
Hinch 2006).
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FIGURE 7. Master curves for (a) 1 mm glass beads, (b) aquarium sand, (c) 0.1 mm glass
beads and (d) coarse grit with Ω = 0.05 rad s−1, r0= 25 cm and m= 1000 g. The master
curves are constructed by averaging between 10 and 15 scaled perpendicular profiles at
y = y0 ≈ r0 (see figure 6) taken every 4 s. The grey band shows the standard deviation
of the scaled profiles about the mean master curve. The dashed line linearly interpolates
between the blade and the tip of the dune.

1.0(a)

(c)

(b)

(d )

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0 0.50 1.0 1.5 2.0

FIGURE 8. Master curves with Ω = 0.05 rad s−1 at y = y0 ≈ r0 for (a) r0 = 25 cm
and various initial masses (m = 250, 500, 750, 1000 g) for 1 mm glass beads, (b) m =
1000 g and varying initial position (r0 = 15, 25 and 35 cm) for 1 mm glass beads,
(c) r0= 25 cm and various initial masses (m= 250, 500, 750, 1000 g) for aquarium sand
and (d) m = 1000 g and varying initial position (r0 = 15, 25 and 35 cm) for aquarium
sand.
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FIGURE 9. (Colour online) Master curves with m = 1000 g at y = y0 ≈ r0 = 25 cm
and different rotation rates for (a) 1 mm glass beads (Ω = 0.05, 0.1, 0.2, 0.4, 0.8 and
1 rad s−1) and (b) aquarium sand (Ω = 0.05, 0.2, 0.4 rad s−1 (dashed) and Ω = 0.8, 1,
1.5, 2 rad s−1 (solid)). The arrows indicate the direction of increasing Ω .

More generally, one would expect that the speed dependence of the master curves
would arise through the local Froude number, Fr = |Ub|/√gH ≡ yΩ/

√
gH, where

|Ub| is the speed of the bulldozer. The experiments in figures 6–8 are conducted
at relatively low Froude number, Fr = O(10−2) or less, and so the dependence on
the radial position, y, and the depth at the blade, H, is not evident; the curves in
these figures characterize the zero-Froude-number limit. Only when the rotation rate
is increased by two orders of magnitude, as in figure 9, does the Froude-number
dependence become apparent. In any event, we conclude that the perpendicular
profiles collapse to Froude-number-dependent master curves that are characteristic of
granular material, much as the shape of the free surface reflects the flow dynamics
in a rotating granular drum.

A final noteworthy point is that the perpendicular avalanching was always observed
to be steady, except over the longer time scale of lateral spreading. This contrasts
with what one observes in rotating drums, wherein flows become intermittent at
low rotation rates and occur via episodic avalanching. In fact, our DEM simulations
did show intermittent motion at low bulldozing speed (see § 4.3), with avalanching
becoming temporally irregular, if not episodic. Thus, our experiments were probably
not conducted at sufficiently low speeds to observe unsteady states.

3.3. Lateral spreading of the dune
In addition to the quasi-steady perpendicular profile, the rearrangement of the granular
mound prompted by the collision of the initial conical pile with the bulldozer also
generates a distinctive lateral profile, H(y, t) = h(0, y, t), along the blade. Figure 10
displays the spreading of this lateral profile for 1 mm ballotini. Initially, the collision
establishes a shape that is almost mirror symmetric in y about the centre of the
initial pile, y = y0 ≈ r0. The dune subsequently spreads both inwards, towards the
centre of the rotating table, and outwards to larger radii. The rate of spreading is,
however, asymmetrical, with the dune spreading faster at larger radii and the inward
edge eventually coming to rest at a finite distance from the centre of the table. This
asymmetry results in part from the increase of the perpendicular velocity Ub =−Ω y
with radial position y. However, because the front of the blade is positioned at a
small distance δ in front of the centre of the rotating table, there is an additional
tangential velocity along the blade, Vb=Ω δ, which advects the dune radially outwards
(cf. § 4.2).
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FIGURE 10. Lateral profiles, H(y, t) = h(x = 0, y, t), for 1 mm glass beads with Ω =
0.05 rad s−1, m=1000 g and initial position r0=25 cm. The arrows indicate the direction
of increasing time and the profiles are taken every 5 s after the dune hits the blade.

In figure 11, we plot the evolution of the lateral profile for dunes of aquarium sand
for different initial positions r0; the lateral spreading depends significantly upon the
value of r0. In all three cases, the dune spreads in the same asymmetrical fashion.
However, unlike for the perpendicular profiles discussed earlier, there appears to
be no straightforward scaling that collapses all these data. Similarly, we are unable
to collapse the lateral profiles of dunes with different initial masses; only from
a more qualitative perspective are the different experiments comparable. Likewise,
lateral spreading is qualitatively, but not quantitatively, similar for the other granular
material (cf. figure 10).

Nevertheless, data from experiments with the same initial mass and position but
different rotation rate can be conveniently collapsed, as illustrated in figure 12. Time
series of the locations of the inner and outer edges, denoted by y−(t) and y+(t), are
plotted for the 1 mm glass beads and the aquarium sand. Also shown is the time
series of the maximum depth of the dune against the blade, Hmax(t)=Maxy{H(y, t)},
along with the radial location ymax(t) at which that maximum occurs. By plotting these
quantities against the dimensionless time Ω t, the data collapse, confirming that the
rotation rate controls the spreading dynamics.

Lateral spreading also appears to be insensitive to the initial shape of the dune,
as we found in other experiments in which grains of aquarium sand were deposited
in half-cones propped up against the blade before rotating the table; once rotation
began, the profiles spread laterally and quickly became very similar to those recorded
for the full sandpiles that suffered collisions against the blade. This insensitivity
suggests a scaling of the lateral profiles based on the depth-averaged model of § 4.2.
According to this model, if we scale the lateral position by y0 and the profile by a
characteristic depth H0 =√2µV/y0, then experiments with comparable values of the
parameter C = µδ/H0 should be similar at the scaled time t/t0, with t0 = µy0/ΩH0.
Here, V is the initial volume (estimated as m/ρ, with ρ the average of the loose
and compacted apparent densities listed in table 1) and µ≡ µM is the leading-order
perpendicular slope. The scaling is illustrated in figure 13 for three of the 1 mm
ballotini experiments with C ≈ 0.2. The comparison is marred to begin with by the
transient during which the memory of the detailed initial shape is destroyed. Beyond
that transient, however, the scaled profiles do appear to follow a common evolution
(at least until the dune is swept out to the edge of the table). Figure 13 also includes
data from one of the aquarium sand experiments (again with C ≈ 0.2); although the
comparison of the scaled data is less satisfying than for the ballotini, the scaling
enjoys some success in view of the relatively large differences in the unscaled data.
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FIGURE 11. Lateral profiles H(y, t) = h(x = 0, y, t) for aquarium sand with Ω =
0.05 rad s−1, m = 1000 g and varying initial position: (a) r0 = 15 cm, (b) r0 = 25 cm
and (c) r0 = 35 cm. The arrows indicate the direction of increasing time and the profiles
are taken every 5 s after the dune hits the blade.

4. Theoretical models

To parallel our experimental discussion, we now provide two versions of a simple
depth-averaged model designed to examine quasi-steady perpendicular avalanching and
lateral spreading. We then present DEM simulations of a slightly simpler arrangement,
the planar bulldozer (i.e. granular dunes driven forwards by a vertical plate undergoing
rectilinear motion), addressing some of the limitations of the depth-averaged models.

4.1. A depth-averaged model for the perpendicular profile
Depth-averaged models are a conventional tool to analyse shallow incompressible
granular flows (Savage & Hutter 1991; Forterre & Pouliquen 2008; Andreotti
et al. 2013). In two dimensions and for steady flow over a horizontal plane, the
depth-integrated equations expressing conservation of mass and horizontal momentum
are

∂

∂x

(∫ h

−b
u dz
)
= 0 and ρ

∂

∂x

(∫ h

−b
u2 dz

)
= ∂

∂x

(∫ h

−b
σxx dz

)
−µb p(x,−b),

(4.1a,b)
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FIGURE 12. Time series of (a,c) the locations along the blade of the inner and outer edges
of dunes, y− and y+, and the position of maximum depth, ymax, and (b,d) the maximum
depth, Hmax=Maxy{H(y, t)}. The results are plotted against Ωt for different rotation rates
(Ω = 0.05 rad s−1, ◦; 0.1 rad s−1, �; 0.2 rad s−1, +; 0.4 rad s−1, �; 0.8 rad s−1, ×;
1 rad s−1, dots). All the piles have m= 1000 g and r0 = 25 cm. In (a,b), data for 1 mm
ballotini are shown; (c,d) show data for aquarium sand.

where u(x, z) denotes the horizontal velocity, the underlying plane is positioned at
z=−b (the base of the blade of the bulldozer being located at z= 0) and ρ is the
density. Here, the normal stresses are (σxx, σzz) and the shear stress on the base of
the layer is expressed as a product of the isotropic pressure p(x, z) and a friction
coefficient µb. For shallow flow, hydrostatic balance typically prevails in the vertical
direction and the pressure dominates the normal stresses,

σxx ≈ σzz ≈−p≈−ρg(h− z), (4.2)

where g is gravity and we ignore the atmospheric pressure above the granular layer.
The first relation in (4.1) indicates that the horizontal flux is uniform, which, in

view of the upstream conditions, implies∫ h

−b
u dz= b Ub. (4.3)

To deal with the second relation, we require expressions for the local vertical
profile of the velocity and µb. For the former we adopt the Bagnold form
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FIGURE 13. (Colour online) Scaled lateral profiles for 1 mm ballotini. In the main
panel, the lateral position y is scaled by the initial position y0, and the depth by H0 =√

2µV/y0, where V is the initial volume (based on the deposited mass m and the average
apparent density listed in table 1). Three different experiments are shown with (m, y0)=
(500 g, 15 cm) (dotted), (750 g, 25 cm) (dashed) and (1000 g, 35 cm) (solid). The
left-hand inset shows the maximum depth against time; in the right-hand inset, the data
are scaled, plotting H/H0 against t/t0, with t0=µ y0/ΩH0. Data from an experiment with
aquarium sand and (m, y0)= (750 g, 15 cm) are also included in the insets (dot-dashed).

(e.g. Andreotti et al. 2013),

u(z)=Ub − 5 h Ub

3 (h+ b)5/2
[(h+ b)3/2 − (h− z)3/2]. (4.4)

Here, the flow is described in the frame of the bulldozer, wherein Ub is the speed
of the underlying table, which is equal and opposite to the speed of the bulldozer
(for our rotating table, Ub =−Ω y). For the basal friction coefficient, the local µ(I)
rheology proposed by GDR Midi (2004) suggests that µb is a function of an ‘inertia
number’

I = 5 d h|Ub|
2
√

g (h+ b)5/2
(4.5)

(the local basal shear rate being 5h|Ub|/2(h + b)2), where d is the particle diameter.
A convenient explicit expression for the I dependence of the friction is

µb(I)=µ1 + (µ2 −µ1)
I

I0 + I
, (4.6)

for three material constants µ1, µ2 and I0 (Jop, Forterre & Pouliquen 2006).
The preceding formulae can be combined into a single expression for the local slope

of the free surface,

∂h
∂x
=−µ(I)

{
1+ Ub

2

4 g (h+ b)

[
1− 5 b2

(h+ b)2

]}−1

, (4.7)

and the profile can be computed using quadrature. For 1 mm glass beads with
µ1 = tan 21◦, µ2 = tan 30◦ and I0 = 0.3, and the experimental parameters given in
figure 9, we find the profiles shown in figure 14. Apart from near the front edge,
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FIGURE 14. (Colour online) Perpendicular profiles computed from (4.7) assuming µ1 =
tan 21◦, µ2 = tan 30◦, I0 = 0.3, k= 1, h(0)=H = 5 cm, r0 = 25 cm and the same rotation
rates as in figure 9, i.e. Ω = 0.05, 0.1, 0.2, 0.4, 0.8, 1, 1.5 and 2 rad s−1. In (a) b= 0; in
(b) b= 2 cm.

the free surface has a slope close to µ1. Closer to the front, the shape depends on
the depth of the incoming layer, b, and the local Froude number Ub/

√
g(h+ b). For

bulldozing on a ‘dry’ plane (b= 0) and relatively slow flows with Ub/
√

g h� 1, the
front steepens up to a ‘contact angle’, tan−1 µ2 (cf. Pouliquen 1999b). With inertia,
however, i.e. Ub/

√
g h = O(1), material is pushed out ahead of the main wedge,

creating a distinctive forward skirt. The situation is quite different when there is an
incoming layer, b > 0: the factor 1 − 5 b2/(h + b)2 reverses the sign of the inertial
correction near the front, with the result that the wedge steepens further there, and
even becomes vertical if the bulldozing speed is increased beyond

√
g b, suggesting

that the front overturns and breaks.
Although the depth-averaged model predicts that the profile is nearly linear with

a front that steepens with an increase in rotation rate, much as in the experiments,
the finer details of the measured profiles are not reproduced (such as the flattening
of the profile at the blade). In fact, it is surprising that the model looks to work
better for the sand than the ballotini, despite the fact that the µ(I) model is designed
for the latter and is known to require revision for sand (e.g. Forterre & Pouliquen
2008). Part of the problem is that the depth-averaged model discards horizontal
derivatives, with the consequence that there are sudden switches in the flow pattern at
the junction of the wedge with the incoming layer and at the bulldozing plate. More
properly, boundary layers should be introduced at these locations to provide smoother
connections. As is clear from the DEM simulations described later, the assumption
that the vertical flow profile takes the Bagnold form in (4.4) can also be suspect,
with the flow adjusting more gradually from the incoming plug to the recirculating
wedge. Moreover, the DEM simulations reveal interesting variations in the packing
fraction, which may impact the local rheology, whereas the model is incompressible.

4.2. Lateral spreading

To construct a simple model of lateral spreading, we couple the depth-averaged
mass conservation equation with some approximations suggested by the observation
that flow becomes quasi-steady perpendicular to the blade. For simplicity, we also
ignore any motion in the uniform layer flowing underneath the blade (i.e. in z < 0).
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Conservation of mass then implies

∂h
∂t
+ ∂

∂x

(∫ h

0
u dz
)
+ ∂

∂y

(∫ h

0
v dz
)
= 0, (4.8)

where (u(x, y, z, t), v(x, y, z, t)) denotes the horizontal velocity field. We rewrite this
equation as

∂h
∂t
+ ∂

∂x
(h Ub + Fx)+ ∂

∂y
(h Vb + Fy)= 0, (4.9)

where (Ub, Vb) is the velocity of the underlying layer in the reference frame of the
blade and

(Fx, Fy)≡
∫ h

0
(u−Ub, v − Vb) dz (4.10)

denotes the flux due to the avalanching internal motion of the granular material.
As discussed above, the granular flow in the transverse x direction adjusts relatively

quickly and the bulldozed dune becomes quasi-steady. Therefore, the net transverse
flux in (4.9), namely h Ub + Fx, must become small,

Fx ≈−h Ub. (4.11)

Any residual transverse flux balances the slow time variation of h and the weaker
lateral flux along the blade. Nevertheless, that residual flux must vanish exactly at
both the blade and the leading front x= X(y, t) of the dune, and so [h Ub + Fx]x=0 =
[Fx]x=X = 0. Hence, to model lateral spreading, whilst avoiding the need to construct
the residual transverse flux, we integrate (4.9) over the x direction to obtain the
relation

∂

∂t

(∫ X

0
h dx

)
+ ∂

∂y

∫ X

0
(h Vb + Fy) dx= 0. (4.12)

We now exploit the fact that the transverse profile of the dune is almost linear,

h(x, y, t)≈H(y, t)−µ x, (4.13)

with constant slope, µ. Hence, X(y, t) = H(y, t)/µ. Furthermore, for a free-surface
gravity-driven flow, one would expect that the avalanche flux, (Fx, Fy), would be
directed downslope, i.e. F ≈ −Γ∇h, where the factor Γ encapsulates the detailed
physics of the granular flow. Hence,

Fy ≈ Fx
hy

hx
≈ h Ub Hy

µ
(4.14)

using (4.11) and (4.13). Thus,

1
2µ

∂H2

∂t
+ ∂

∂y

∫ X

0
(H −µx)

(
Vb + Ub Hy

µ

)
dx= 0. (4.15)

Once the basal velocity, (Ub,Vb), is prescribed, the integral in (4.15) can be computed
and the model can be completed.



160 A. Sauret, N. J. Balmforth, C. P. Caulfield and J. N. McElwaine

−40 −30 −20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1.0

y

H
 (

y,
 t)

10−2 100 102

Y

Hmax100

101

FIGURE 15. (Colour online) The solution to the planar bulldozer problem defined by
(4.16), showing the collapse of a Gaussian, H(y, 0)= e−y2/10+ 10−4, towards the similarity
solution in (4.17)–(4.18) (red dots and dashed lines). The main panel shows 10 snapshots
of the solution, equally spaced in t2 up to t= 103µ/|Ub|; the inset shows the maximum
depth Hmax(t) and edge position Y(t). A prewetted film of depth 10−4 is added to avoid
any numerical problems with the vanishing of the diffusivity in (4.16), and is sufficiently
shallow that it has no effect on the solution. For the numerical solution, the edges of the
dune, y=±Y(t), are defined as the positions where H(y, t)= 2× 10−4.

4.2.1. The planar bulldozer
When the bulldozer undergoes rectilinear motion in the x direction, Vb = 0 and Ub

is a constant that must be negative if the blade is located at x= 0 and the wedge is
piled up in x> 0. Equation (4.15) then reduces to

(
H2
)

t =−
Ub

µ

(
H2Hy

)
y . (4.16)

As illustrated in figure 15, we may solve (4.16) as an initial-value problem given a
suitable initial condition (a Gaussian in the figure). Over longer time, the numerical
solution converges to a similarity solution given by

H(y, t)=
{

Hmax(1− y2/Y2), for − Y < y< Y,
0, elsewhere, (4.17)

where

Y(t)=
(

375 V Ub
2 t2

8µ

)1/5

, Hmax(t)=
(

45µ3 V2

64 t |Ub|
)1/5

(4.18a,b)

and V ≡ ∫ H2dy/2µ is the volume of grains in the dune. Solutions beginning with
a wide range of single-humped initial conditions converge to the self-similar form in
(4.17). In other words, after a transient that obliterates the initial shape, the mound
adopts a characteristic parabolic profile, spreading laterally like t2/5 while its maximum
depth falls like t−1/5.
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4.2.2. The rotating bulldozer
In our Cartesian coordinate system, the front face of the blade lies along the (y, z)-

plane at x = 0. However, as already noted, in our experiments the rotation axis was
offset from the origin of the coordinate system by a distance δ. The basal velocity
field is then

Ub = −Ω y, (4.19)
Vb = Ω (x+ δ) (4.20)

(the rotation axis being located along the line (x, y, z)= (−δ, 0, z)). Thus,

µ

Ω

∂H2

∂t
+µδ ∂H2

∂y
= 1

3

[
y2

(
H3

y

)
y

]
y

. (4.21)

It should be noted that (4.21) applies only for y> 0; for y< 0, the granular medium
must be piled up on the opposite side of the blade, which calls for some key switches
of sign in the formulae.

We first consider the case when the blade is positioned exactly along a diameter
of the rotating table, so that δ = 0. Numerical solutions to the corresponding initial-
value problem illustrate how the dune slumps preferentially radially outwards; see
figure 16, which shows the lateral spreading of an initially parabolic mound. The
granular material also piles up towards the centre, building up a sharp edge near y= 0.
Again, the solution converges to a self-similar solution, this time given by

H =
{
µ t−1Ω−1 y1/3 (Y2/3 − y2/3), 0< y< Y,
0, elsewhere, (4.22)

where

Y =
(

105 t2 V Ω2

4µ

)1/3

(4.23)

denotes the lateral extent of the dune, in terms of which the maximum depth and its
location are given by

Hmax = 2µY

3
√

3 tΩ
and ymax = Y

3
√

3
. (4.23a,b)

Evidently, the linear rise of the rotation speed with y increases the rate at which the
dune is swept outwards and thins (Y ∼ t2/3 and Hmax∼ t−1/3, rather than t2/5 and t−1/5,
respectively, for the planar bulldozer).

When δ 6= 0, the flux along the blade picks up an additional component that
helps to sweep the dune out to larger radii, where rotational bulldozing effects a
rapid diffusion to flatten out the mound. The additional advection prevents material
from piling up towards the centre of the rotating table, and the solution no longer
converges to the similarity solution (4.22) and (4.23). The dynamics is illustrated by
the solutions of the initial-value problem shown in figure 17. These examples use
parameter settings based on the experiment with aquarium sand shown in figure 17
(δ= 2 cm and µ= tan θM ≈ tan 36◦), and use three different initial profiles H(y, 0), all
with the same volume. The first is a profile obtained by taking a sandpile with slope
µs ≈ tan 33◦ centred at y0 and then rearranging the material at each y into wedges



162 A. Sauret, N. J. Balmforth, C. P. Caulfield and J. N. McElwaine

0 100 200 300 400 500 600 700 800 900

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y

0 100 200 300 400

200

400

600

800

y+

ymax

0 100 200 300 400
0.5

1.0

1.5

2.0

2.5

Hmax

H
 (

y,
 t)

FIGURE 16. (Colour online) Numerical solution to the rotating bulldozer problem in
(4.21) without radial advection (δ= 0), showing the collapse of a parabolic mound (again
supplemented by a thin prewetted film of depth 10−4) towards the similarity solution in
(4.22)–(4.23) (red dots and dashed lines). The main panel shows 20 snapshots of the
solution, equally spaced in t2 up to t = 500 µ/Ω; the insets show the position of the
right-hand edge of the dune, y+, the location of the maximum depth, ymax, and that depth,
Hmax(t). For the numerical solution, y+ is defined by H(y+, t)= 2× 10−4.

with slope µ; this is the theoretical initial condition corresponding to the experiment
given our assumption of a relatively rapid adjustment to a quasi-steady state of
perpendicular avalanching. The second initial profile is also based on rearranging the
sandpile. However, the simplest rearrangement of this sort furnishes an initial shape
with slopes that exceed µ, which would presumably avalanche laterally; to avoid this
detail, the steeper slopes of the rearranged sandpile are replaced with linear sections
of slope µ, and the entire profile is then rescaled to furnish the correct volume. The
third initial condition is simply a triangle with slopes of µ. As can be seen in the
figure, after a short transient (lasting less than 10 s), all three cases converge to the
same spreading solution. Thus, the finer details of the initial profile are not significant,
as found experimentally.

Qualitatively, the solutions in figure 17 are similar to the experimental observations.
However, although the theory rationalizes the collapse of the experimental data
in figure 12 for different rotation rates, the agreement between the model and the
experiment is not quantitative. This is shown in the insets of figure 17, which compare
the theoretical predictions for the positions of the edges and maximum of the dune
and its maximum depth with data from the experiment in figure 11(b).

The insensitivity to initial shape suggests a convenient rescaling of (4.21). If we set

ŷ= y
y0
, Ĥ = H

H0
, t̂= t

t0
, H0 =

√
2µV

y0
and t0 = µ y0

Ω H0
, (4.24a–e)

then the evolution equation becomes

∂Ĥ2

∂ t̂
+C

∂Ĥ2

∂ ŷ
= 1

3

ŷ2

(
Ĥ3

ŷ

)
ŷ


ŷ

(4.26)
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FIGURE 17. (Colour online) Numerical solution to (4.21) with Ω = 0.05 rad s−1, y0 =
25 cm, µ= tan 36◦ and δ= 2 cm. The snapshots of H(y, t) are shown every 5 s, and the
insets show the position of the maximum of the dune ymax(t), the edges of the dune y±(t)
and the maximum depth Hmax(t). Three solutions are shown, starting from three different
initial conditions but all with the same mass: a triangle (dotted), the profile expected from
rearranging a sandpile (solid) and the profile obtained when the rearranged sandpile is
adjusted to limit its maximum slope (dashed), as described further in the main text. In
each case, a prewetted film of depth 10−4 is added and the edges are defined as the
locations where h(y, t) = 2 × 10−4. The dots in the insets show the corresponding data
from the experiment in figure 11(b).

and the rescaled volume constraint is
∫

Ĥ2dŷ=1. Thus, the later-time solutions depend
on the single parameter C, as was roughly confirmed experimentally in § 3.3.

4.3. DEM simulations
For our DEM simulations, we used identical deformable spherical particles. All
variables are expressed in dimensionless form, with lengths scaled by the particle
radius d/2, speeds by

√
g d/2 and times by

√
d/2g. Particle collisions are dealt with

using a soft-particle model with a damped linear spring for the normal force (with
zero coefficient of restitution) and dynamic Coulomb friction for the tangential force
(with a coefficient of friction equal to 0.3). The particle stiffness was chosen so that
any overlap would not exceed 1 %. The time step was one tenth of the binary collision
time; additional computations with a smaller time step verified the insensitivity of the
results to this choice. Simulations were also performed with different stiffness values
and with a static friction model wherein the tangential displacement of each contact
was tracked; there was no discernible change in the main characteristics of the dunes.

To mimic the sandpaper glued to the surfaces of the experimental bulldozer and
the rotating table, we suitably positioned a set of immobile particles to create a
rigid vertical plate and translating underlying plane. To help prevent the particles
from crystallizing against these boundaries, the immobile particles were placed on a
rectangular grid with a spacing equal to ∆ = 3(2 + √3)/5 times the particle radius.
We performed two suites of computations: in one, the base of the bulldozing plate
was located 20 particle radii above the plane; for the other, the base of the blade
was placed next to the plane to avoid any gap between the two obstructions. In the
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latter, particles do become temporarily jammed between the bulldozer and the surface
(the effect we sought to avoid in the experiments by emplacing the underlying layer);
when released, these grains gain significant kinetic energy and can become launched
out on ballistic trajectories. This dynamics depends on the model for particle collision
but does not affect the overall behaviour of the dunes.

Unlike the rotational geometry of the experiment, the DEM simulations were
conducted with a bulldozing plate undergoing rectilinear perpendicular motion in
Cartesian geometry. We used two configurations. First, to explore the perpendicular
dynamics independently of any lateral spreading, we used a relatively narrow slot
with a perpendicular length of 150∆ and a lateral width of 5∆ (corresponding to
approximately 150 by 6 particles). The domain was taken to be periodic in both
horizontal directions, and 20 000 or 10 000 particles were released, depending on
whether there was an underlying layer or not. The narrowness of the slot eliminates
coherent lateral motion, and simulations in domains of different width suggested little
dependence on that dimension. In our initial simulations, the particles were deposited
in a triangular wedge; the ensuing bulldozing flow led to a vigorous adjustment, with
a fraction of the particles launched away from the bulk on ballistic trajectories. The
material took some time to settle down after this transient (requiring several passes
of the blade through the domain to allow the wedge to adjust and the packing in the
bed to increase). In subsequent simulations, we therefore used the particles positioned
from an earlier evolved solution with a different bulldozer speed.

Second, to study lateral spreading, we prepared a much wider simulation by
assembling several side-by-side copies of one of the narrow simulations and evolved
this configuration for a while to reduce any spatial correlations. We then formed
a localized mound against the blade in the centre of this domain by taking the
profile along the midline y = 0 and rotating this curve about the origin, clipping all
the overlying particles. This created a half-cone above the bed (as can be seen in
figure 21(a)) and minimized any subsequent vigorous adjustment. The width of the
computational domain (i.e. the number of copies of the original slot) was chosen to
be sufficiently large compared with the half-cone so that mobilized particles did not
reach the lateral boundaries, thus rendering irrelevant the precise width and the lateral
boundary conditions. Altogether, there were approximately 1.2 million particles in the
lateral spreading simulations with an underlying layer and about 180 000 particles in
the simulations without one.

4.3.1. Dynamics of perpendicular avalanching
In our dimensionless units and with a fixed number of particles, there is only

a single parameter in the simulations, which is the bulldozer speed |Ub|. During
bulldozing, the particles become distributed so that they build up a wedge of depth H
against the blade, furnishing the effective Froude number of the flow, |Ub|/

√
H. Our

main interest is in characterizing the steady flow states, so we omit any discussion of
the initial transients (which can be seen in the movies in the supplementary material).
Nevertheless, the nature and existence of a steady flow state is not straightforward.
At the lowest Froude number, the flow becomes more intermittent in time. At higher
speeds, flow patterns can also vary over very long time periods (hundreds of passes
of the bulldozer). These variations can be due to small increases in the packing
fraction in the basal layer and the dune, which can lead to flows with much larger
fluctuations in the forces and velocities. This is presumably the same effect as seen
by Gravish et al. (2010) in experiments with overconsolidated packings. Moreover,
despite our efforts to avoid crystallization, arrangements of perfectly close-packed
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grains can form adjacent to the blade and generate long-time-scale variability, as
described below. Nonetheless, these problems do not substantially affect the results
we present and do not mar our lateral spreading simulations.

The results of simulations at speed |Ub| = 1 with and without the underlying layer
are displayed in figure 18. The steady-state flow patterns within the wedges built
up against the blade are shown; the superposed density plots display the packing
fraction and the insets show snapshots of the particle positions colour-coded by their
location at a given time earlier. Also indicated are a selection of vertical profiles
of the horizontal velocity. In figure 18(a), for the simulation with an underlying
layer, the wedge is approximately 30 particles high, which is a little more than in
the largest ballotini experiment. In agreement with the experiments, the wedge has
almost constant slope, flattening out near the blade and steepening near the flow front.
The simulation without an underlying layer in figure 18(b) furnishes a wedge that
is even flatter at the blade and steeper at its front, illustrating how the underlying
layer influences the shape of the free surface. The recirculation cell within the wedge
is also very different. The vertical profiles of the horizontal velocity are fairly well
reproduced by the Bagnold profile in the case without an underlying layer, but the
comparison is poorer when the layer is present. For either case, the vertical shear is
finite at the surface, unlike that predicted by the Bagnold profile. One should note
the weak backflow underneath the blade in figure 18(a).

The ‘yield surface’ that divides the deforming wedge from the ‘plug’ flow in the
layers in front and behind is also shown in figure 18(a). For this simulation, there
is a weakly deforming triangular region propped up against the bulldozer which can
be identified by an irregular pattern in the packing fraction. The weak deformation is
revealed by the undeformed vertical stripes in the colour-coded particle positions in
the inset and by the flat section in the second and third profiles of the horizontal
velocity. This region is problematic in the DEM simulation as particles sometimes
crystallize there. The rigid rotation of these persistent ‘frozen crystals’ dramatically
impacts the flow field and surface shape, and generates long-time-scale variability.
As the crystallization is prompted by conducting a relatively narrow simulation with
identical particles, we omit a description of its dynamics in any more detail.

Results from simulations with varying bulldozer speed are summarized in figures 19
and 20. Figure 19 plots how various characteristics of the wedge depend on |Ub|;
figure 20 shows the corresponding wedge profiles. With an underlying layer, the shape
of the wedge is largely independent of the Froude number for Fr < 0.3 (|Ub| < 3);
see the data for the wedge height and slope in figure 19(a,b), and the collapse of the
profiles to a common master curve shown in the inset of figure 22(a). For Fr > 0.3
(|Ub|< 3), the height, angle and profile of the wedge depend noticeably on the Froude
number; the Froude-number dependence of the master curve at these bulldozer speeds
is somewhat different from that observed for the experiments. This discrepancy is
partly due to the lateral spreading of the experimental dunes (cf. § 4.3.2). However,
the DEM simulations also have the feature that the depth of the surface behind the
bulldozer decreases slightly as |Ub| increases (see the left-hand edges of the profiles
in figure 22a); faster wedges therefore encounter shallower incoming layers, unlike in
the experiments (which last for one rotation of the table or less). The thinning results
from the backflow under the blade evident in figure 18(a) and is described in more
detail in Percier et al. (2011). For the simulations without the underlying layer, there
is a much more gradual and monotonic dependence of the wedge characteristics on
the Froude number, and the wedge profiles do not collapse as cleanly onto a common
master curve for the range of Froude numbers simulated.
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FIGURE 18. (Colour online) The steady-state flow pattern set up in simulations in a
narrow slot for |Ub| = 1 with an underlying layer in (a) and without one in (b). The black
lines in the main panels show a selection of streamlines (not equally spaced); the packing
fraction is superposed, plotted as a density on the (x, z)-plane. At the horizontal positions
x indicated, the vertical profile of the horizontal velocity u is plotted in the sequence of
panels underneath; the dashed lines show the corresponding Bagnold profiles. The insets
show snapshots of the particle distribution, with particles colour-coded according to their
horizontal position T time units earlier; in (a) T = 100, whereas T = 50 in (b). (A movie
of the simulation without an underlying layer is available as supplementary material.)
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FIGURE 19. (Colour online) A summary of the steady-state results for simulations in a
narrow slot showing the dependence on |Ub| of (a) the depth at the blade, x= 0, (b) the
leading-order surface slope angle, (c) the mass of material in the wedge Mw =

∑
j(uj −

Ub)/|Ub| and (d) the effective horizontal and vertical friction coefficients, (µx, µz) =
(Fx, Fy)/(gMw), where (Fx, Fz) is the net force on the blade (Fx < Fz). The squares and
circles show the results with an underlying layer; the triangles show the results without
one.

4.3.2. Lateral spreading
The laterally spreading solution with an underlying plane for |Ub| = 1 is displayed

in figure 21. Because the bulldozing is planar in the simulation, the spreading
is symmetrical, unlike in the experiments. Despite this difference, there are still
qualitative similarities between the simulations and experiments. Further details of
the simulation are shown in figure 22, which plots snapshots of the perpendicular
profiles along the midsection of the dune (i.e. y= 0) and its lateral profile along the
blade (the depth at x= 0) at different times. These profiles appear to be self-similar,
as indicated by the insets of the figure, which scale the perpendicular profiles with
H(0, t) and the lateral profiles with Y(t), the lateral extent of the dune. Figure 22
also shows the corresponding results for a simulation without an underlying layer.
Qualitatively, the character of the evolution is very similar. In particular, for the
simulation without an underlying layer, the self-similar lateral profile adopts a form
that is well fitted by the parabolic similarity solution in (4.17). It should be noted
that the perpendicular master profile shown in the inset of figure 22(a) is somewhat
steeper at the blade than the narrow-slot simulations in figure 20(a), and therefore
compares more favourably with the experimental profiles.

Figure 23 plots the time series of H(0, t), Y(t) and the maximum perpendicular
run-out, X(0, t), for both simulations in figure 22. Also included are best-fit power-law
fits to these series. For H(0, t) and X(0, t), the data are roughly fitted by t−1/5, which
is the self-similar scaling predicted by (4.18b) (the best-fit powers are −0.22 with
the underlying layer and −0.19 without it). However, although the best-fit power law
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FIGURE 20. (a) Steady-state wedge profiles for simulations with varying bulldozer speed
in a narrow slot (a) with and (b) without an underlying layer. The black lines denote the
profiles for |Ub|> 3.2 (beyond the minimum of the curve in figure 19a); the grey lines
denote the simulations with |Ub|< 3.0. In the insets, the profiles are rescaled by the depth
at the blade, x= 0, to furnish the master curves, after subtracting the level of the incoming
layer in (a).

for Y(t) is not too far from t2/5 for the simulation without an underlying layer (the
best-fit power is 0.34), it is quite different with the basal layer (0.26). The key to
explaining this discrepancy is to examine the total mass contained in the dune, Mw.
For the simulation without the underlying layer, the best-fit powers for H, Y and
X(0, t) sum closely to zero, confirming the notion that the dune is a slowly spreading
but constant-mass structure. With the underlying layer, however, the exponents do
not sum to zero, suggesting that the dune is losing mass as time progresses. Indeed,
direct measurements (figure 23a) indicate a power-law decay of Mw beyond an initial
transient, with a best-fit exponent of −0.14, which is close to the summed exponents
of H, Y and X(0, t). The mass loss occurs because the backflow under the blade
effectively skims off material from the underlying layer and further builds up the dune
at the beginning of the simulation. Due to lateral spreading, however, the backflow
weakens with time, returning mass to the underlying layer. Evidently, the scaling of
Y(t) is the main casualty, probably because the shallow edges of the dune are affected
most.

5. Conclusion
In this paper, we have studied the granular flow created by bulldozing a pile of

grains over a level surface, both experimentally and theoretically. In the experiments,
we bulldozed a granular mound over a rotating table, demonstrating how an
avalanching dune is driven forwards in two phases. A first rapid adjustment takes
place perpendicular to the blade, with the emergence of a quasi-steady avalanching
state characterized by a profile that has an almost constant slope. This rapid
adjustment is followed by a second slower phase of lateral spreading parallel to
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(a) (b) (c) (d) (e)

FIGURE 21. (Colour online) Particle positions at t=0, 100, 200, 300 and 400 for a lateral
spreading simulation with an underlying layer and |Ub| = 1. The particles are coloured
according to their initial height. (A video of this simulation is available as supplementary
material.)

the blade. We constructed two simple depth-averaged theoretical models to describe
the perpendicular steady-state avalanching and lateral spreading. The first model
captures the leading-order linear slope of the experimental dunes, but not the finer
details of their nonlinear shape. The experimental observations of asymmetrical radial
spreading and outward migration are matched qualitatively, but not quantitatively, by
the second model.

Our theoretical discussion is further shored up by DEM simulations, which
reproduce the phenomenology seen in the experiments and offer a better comparison
with some of the more detailed observations. We have not, however, exploited the full
power of the DEM simulations in dissecting the flow dynamics non-invasively, or to
study the detailed effect of some of the physical parameters, such as the depth of the
underlying layer and the detailed boundary conditions on the blade. Our computations
do suggest that both of these are key in determining the shape of the perpendicular
profile at the blade. As an alternative to DEM, two-dimensional computations of
the free-surface flow are also feasible for fluid modelled with the empirically based
model rheology of GDR Midi (2004). The comparison of such computations with
our experiments and DEM simulations will probably act as a sensitive test of the
empirical rheology.

From an experimental perspective, our approach has focused mainly on recording
the shapes of the free surfaces of bulldozed dunes. Although it is difficult to determine
the full velocity field within the dune non-invasively, it is certainly possible to measure
the surface velocity profile. Indeed, by using a mixture of grains of different colours
(in this case, black and white), we were able to take some preliminary particle image
velocimetry measurements for dunes of aquarium sand, as shown in figure 24. The
avalanching flow at the front of the dune is clear in these measurements, which
provide a more demanding test of any theoretical model. The perpendicular surface
velocity increases towards the front of the dune, as the avalanching particles accelerate.
There is also a significant lateral surface velocity, which is probably due to the overall
surface shape. The spatial structure of the flow field warrants further investigation.

As a model granular flow, the two-dimensional bulldozer could be considered as
midway in complexity between the inclined-plane or shear-cell configuration and more
complicated flows like the rotating drum. The inclined-plane and shear-cell tests are
steady uniform flows that are free of any yield surfaces or rigid plugs. The streamlines
in the rotating drum, in contrast, piece together paths of acceleration and deceleration,
with flow bounded from below by a yield surface. The wedges of our bulldozed flows
do not appear to contain any yield surfaces, but particles do experience phases of
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FIGURE 22. Lateral spreading simulations (a,b) with and (c,d) without an underlying layer.
Panels (a) and (c) show the perpendicular h(x, 0, t) profiles and panels (b) and (d) show
the lateral H(y, t) = h(0, y, t) profiles. The insets show scaled versions of these profiles,
with the perpendicular profiles in (a,c) scaled by the depth at the blade and the lateral
profiles in (b,d) scaled by the half-width Y(t). The grey lines in the insets show the initial
and final profiles. The times of the snapshots are given by t= tmin + (tmax − tmin) (j/15)5/2,
j = 0, 1, . . . , 15, with (tmin, tmax) = (0.1, 2000) and (0.5, 11 650) in (a,b) and (c,d),
respectively.
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FIGURE 23. Time series of (a, c) the maximum depth H(0, t) and (b, d) the half-width
Y(t) and perpendicular run-out X(0, t) for the simulations shown in figure 22. The half-
width Y(t) and run-out X(0, t) are determined by fitting a second-order polynomial p(x, y)
to the surface profile and then finding the positions for which p(0, Y)= p(X, 0)= 0. The
dashed grey lines are the best fits for the parameters (Y0, X0, µ, p1, p2) to the data for
t > 50, assuming Y(t) = Y0 (1 + t/t0)

p1 , X(0, t) = X0 (1 + t/t0)
p2 , H(0, t) = µX(0, t) and

t0 = Y0
2/(5 X0 |Ub|). With the underlying layer (a, b), the best-fit power for H, X(0, t) is

−0.22 and for Y is 0.26 for with a friction coefficient of 0.41; without the layer (c, d),
the powers are −0.19 and 0.34, with a friction coefficient of 0.41. In panel (a), the inset
shows the mass of material in the wedge normalized by its initial value as a function of
time; the grey dashed line shows the best power-law fit with an exponent of −0.14.

acceleration and deceleration as they traverse the average streamlines. Thus, the flow
might well prove useful as a probe of granular rheology, a stepping stone from the
inclined plane or the shear cell to the rotating drum.

Of course, although the mean flow of a steady two-dimensional bulldozer possesses
closed streamlines, the finite size of particles and their granular temperature allows
particles to cross transport barriers and mix. Moreover, for our rotating bulldozer, the
slower lateral spreading also implies transport. Indeed, qualitative experiments using
aquarium sand of different colours highlighted the exchange of granular material
between the initial dune and the underlying layer, as is apparent in figure 25. Such
mixing is also clear in the DEM simulations (figure 21). Quantitative measurements
and modelling of this phenomenon are beyond the scope of the present paper but may
be of interest, for example, when one is considering the transport of pollutants over
soil and the avoidance of contamination is a critical objective. A detailed exploration
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FIGURE 24. (Colour online) The surface velocity field of a dune of aquarium sand. Panel
(a) shows the raw image and panel (b) depicts the surface speed in cm s−1 as a density
over the plane of the image. The surface velocity components perpendicular and parallel
to the blade, Ux and Uy, are plotted as arrows in (b) and then in (c,d) along the lateral
positions y = 10 cm (dashed), 15 cm (continuous), 20 cm (dashed-dotted), 25 cm (thick
continuous) and 30 cm (thick dashed). It should be noted that, in view of the inclination
of the surface, the velocity field (Ux,Uy) does not correspond to the horizontal Cartesian
velocity (u, v).

of particle migration would also be relevant to granular segregation; the bulldozer is
an interesting experimental configuration in which to study this phenomenon.

Another interesting observation which we did not explore in detail was the effect
of slip over the surface of the rotating table. When the table was not covered by
sandpaper, but was left as a smoother wooden surface, the uniform layer initially
emplaced clearly began to slide during the approach to the bulldozer. In particular,
the flow divided up into three characteristic regions. Well ahead of the dune, the
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(a) (b)

FIGURE 25. (Colour online) Photographs from an experiment with m = 1000 g, Ω =
0.05 rad s−1 and y0 = 25 cm and different coloured aquarium sand. The initial pile of
black sand was bulldozed over a layer of white sand. Panel (a) shows the collision of the
dune with the blade. Relatively quickly, an exchange of particles between the sandpile and
the underlying bed is visible, as shown in panel (b) (at t= 35 s). The scale bar in (a) is
15 cm.

underlying layer remained flat and stationary, while closer to the blade, the dune built
up into a quasi-static avalanching mound that appeared similar to those documented
earlier. In between, the sliding underlying layer created a buffer zone with a much
shallower slope than the dune behind it. Interestingly, the compression incurred over
this buffer appeared to generate surface features reminiscent of a fine wrinkling pattern
(cf. Alarcón et al. 2010).
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