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Competitive dynamics of two erosion patterns around a cylinder
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We investigate experimentally the local erosion of a granular bed near a fixed vertical
cylinder that emerges from the bed. The onset of erosion arising at the base of the cylinder and
usually ascribed to the wrapping horseshoe vortex is determined and rationalized by a flow
contraction effect. We report another erosion pattern visible downstream of the cylinder that
consists of two side-by-side elongated holes. This pattern is observed for flow regimes close
to the horseshoe scour onset, whose growth usually inhibits its spatiotemporal development.
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I. INTRODUCTION

Granular material is removed and transported by fluid flow through erosion processes, which are
encountered in numerous natural and industrial situations. Understanding and modeling the erosion
processes are essential to study geomorphological patterns or to predict the evolution of river beds
[1–3]. The erosion begins when a critical shear stress is reached. Defining this onset is therefore key
to determining the subsequent law for grain transport [4,5]. Well-controlled laboratory experiments
constitute an opportunity to investigate the early times of the erosion [6]. Indeed, determining the
onset, even under the action of a simple shear flow, remains challenging as it is intimately related to
the solid-liquid transition for the granular matter [7–11].

Quantifying the erosion in the vicinity of structures is complex as the fluid flow becomes complex
with the presence of vortices. As erosion can reduce the stability and integrity of a wide range of
hydraulic structures, its characterization would benefit the design and risk assessment of engineered
systems such as bridge piers, offshore platforms, and wind or hydraulic turbines. Past work in
large-scale facilities [12,13] has not allowed the development of robust physical models for the
erosion that occurs around structures [14,15] because of both the rheology of granular materials [3]
and the complexity of the flow generated around the structure [16,17]. Indeed, in the vicinity of a
cylinder, several types of vortices are generated such as the horseshoe vortex that wraps around the
base of the cylinder or the Bénard–von Kármán vortices downstream of the cylinder. In recent decades,
most studies have focused on the time evolution of scouring and on the prediction of the maximum
scour depth [13,15]. Surprisingly, only little attention has been devoted to the onset of erosion, which
is usually not taken into account in erosion modeling [15]. However, the threshold of erosion is a
key parameter to improve the models of erosion significantly and describe the transport processes.

In this paper, using small-scale laboratory experiments, we investigate the erosion threshold
and the resulting patterns around an immersed cylinder. We specifically focus on the clear-water
regime, which corresponds to the situation where no erosion occurs in the absence of the obstacle.
In addition to the traditional horseshoe scouring, we report an erosion pattern downstream of the
cylinder, consisting of two side-by-side elongated holes. We study the onset and the competitive
growth dynamics of these two erosion patterns.

II. EXPERIMENTAL METHODS

The experimental setup used consists of a closed racetrack-shaped channel, 3.6 m long and
W = 0.1 m wide, composed of two linear parts, each of length L = 0.9 m and separated by two
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FIG. 1. Schematic of the experimental setup (top view).

opposite curved parts with a radius of 0.3 m. A similar setup was recently used to determine the
onset of erosion of a granular bed without obstacle [18]. A paddle wheel located in one linear part
of the channel generates the fluid flow. In the opposite linear test section, a granular bed made of
sieved glass beads of density ρg = 2.5 × 103 kg m−3 and diameter d = 0.27 ± 0.03 mm is put in
a removable drawer of 600 mm length and 40 mm depth at the bottom of the channel. A vertical
cylinder of diameter D in the range 5 � D � 30 mm is fixed on the granular bed at a midgap
width and 520 mm away from the entrance of the linear test section. The water height used in the
experiments remains constant and equal to h = 160 mm. The experiments have been performed with
a cylinder of height H = 90 mm above the granular bed. The sidewalls of the test section are made
of glass and allow a direct visualization of the scouring in the vicinity of the cylinder. A schematic
of the setup and the coordinate system is shown in Fig. 1. A laser profilometer is mounted on a
horizontal translation guide to scan the granular bed topography from above, every 5 min without
stopping the flow. We denote by ξ (x,y,t) the topography corresponding to the difference from the
initial horizontal topography measured before any flow at t < 0. We also put a horizontal glass plate
on the water surface above the granular bed to limit the signal noise in topography measurements
that may arise from the fluctuations of the water surface.

Before each experiment, the granular bed is stirred and leveled with a ruler, which ensures a
reproducible initial packing and a flat horizontal surface. The upper part of the cylinder is then
magnetically fixed on its lower part previously buried in the granular medium and flushed with the
granular bed. The flow is then switched on at a given velocity U at time t = 0. The flow velocity is
controlled by the rotation of the paddle wheel and is up to a mean value of the flow U � 0.25 m s−1.
The typical Reynolds number based on the channel width W is ReW = ρUW/η � 104 considering
the density ρ = 103 kg m−3 and viscosity η = 10−3 Pa s of water. The channel flow is thus turbulent
and the velocity profiles are measured using particle image velocimetry (PIV) methods. We ensure
that the velocity profile just before the cylinder is nearly the same throughout the channel width,
with an adequate honeycomb filter at the entrance of the linear test section. The velocity profile has a
nearly flat profile except near the bottom surface with a friction velocity u∗ � U/13, corresponding
to the boundary layer thickness δ � 1 mm. The Reynolds number of the flow around the cylinder
is ReD � 103, far beyond the critical values ranging from 50 to 90 for the Bénard–von Kármán
unsteadiness for an infinite cylinder between two parallel sidewalls with the present aspect ratio
0.05 � D/W � 0.3 [19]. The flow around the cylinder is thus also turbulent with strong unsteady
wake vortices downstream. Finally, although our experiments are performed with a horizontal glass
plate at the free surface, the results presented here are also valid for a free-surface flow. Indeed,
the Froude number Fr = U/(gh)1/2, which describes the ratio of the flow velocity to the velocity of
surface waves, is smaller than 0.2 and thus the interaction of the fluid free surface with the deformation
of the granular bed can be neglected.

III. EROSION PATTERNS

Experimentally, the erosion of the granular bed without any cylinder occurs above the threshold
velocity Uc � 0.17 m s−1, corresponding to a global Shields number Shc = ρU 2/�ρgd � 7.5. The
global Shields number represents the ratio of the destabilizing global inertial fluid stress ρU 2 far from

012302-2



COMPETITIVE DYNAMICS OF TWO EROSION PATTERNS …

FIG. 2. Pictures of the granular bed in the vicinity of the cylinder of diameter D = 20 mm for (a) Sh/Shc �
0.10, ReD � 1000, and t � 3.0 h; (b) Sh/Shc � 0.37, ReD � 2100, and t � 6.9 h; (c) Sh/Shc � 0.85, ReD �
3200, and t � 0.72 h, with a rigid base at the bottom; and (d) Sh/Shc � 0.85, ReD � 3200, and t � 0.17 h. Also
shown is the topography ξ (x,y) of the (e) wake scour and (f) horseshoe scour patterns for the same parameters
as in (b) and (d), respectively.

the bed surface to the stabilizing reduced gravity stress on the grains �ρgd, where �ρ = ρg − ρ

is the density difference between the grains and the fluid. Here we consider the inertial Shields
number as the particulate Reynolds number Red � 50 is larger than unity, which corresponds to an
inertial regime. The local Shields number, based on the fluid stress estimated at the bed surface, is
Sh∗

c � Shc/170 � 0.04 at the onset of erosion. This value is in the range of threshold values usually
reported for the present shear Reynolds number Re∗ � 3 based on the friction velocity u∗ and grain
diameter d [20]. We should emphasize that different methods are used to determine the onset of
erosion [9] and we choose to measure the onset visually by increasing the flow velocity slowly by steps
of 1 mm s−1 until a few grains are observed to move, over a few minutes. This procedure is repeated to
quantify the dispersion of the measurements around the mean value. In the following, we will consider
the influence of the cylinder and characterize the erosive strength of the flow with the reduced Shields
number Sh/Shc defined as the ratio of the Shields number to the value Shc obtained for the live-bed
condition, i.e., when the sediment transport occurs upstream of the obstacle. The value Sh/Shc = 1
thus corresponds to the live-bed condition, whereas Sh/Shc = 0 corresponds to no fluid flow.

We now consider the scouring in the presence of the cylinder in clear-water conditions, for which
Sh/Shc < 1. Erosion takes place in the vicinity of the cylinder where the flow is modified by the
immersed obstacle. Figures 2(a)–2(d) show the scour pattern, imaged from the side, which occurs
around a cylinder of diameter D = 20 mm for various values of Sh and ReD . At low enough Sh, no
erosion occurs, even in the presence of an obstacle [Fig. 2(a)]. At large enough Sh values, a large hole
with an annular shape is observed all around the cylinder as shown in Fig. 2(d). The corresponding
topography measurements reported in Fig. 2(f) exhibit a large hole all around the cylinder with a
nearly circular shape of diameter �4D and maximal depth �0.4D, flattened at the rear. We also
observe a dune formed by the scoured grains downstream with a roughly equivalent maximal height
�0.4D. Here the Shields number is Sh � 6.4, close to the value measured in the live-bed condition,
Shc � 7.5. This value corresponds to the reduced Shields number Sh/Shc � 0.85, so the scouring
phenomenon is almost maximal. This erosion pattern localized at the base of the cylinder has been
widely observed and is usually attributed to the erosive action of the horseshoe vortex that forms
just upstream of the cylinder near the bottom surface and wraps around the cylinder as a necklace
[12–15]. We will thus refer to such an erosion process as horseshoe scour (HSS). For smaller flow
values, the erosion is weaker and vanishes for the critical Shields value ShHSS

c � 2.1, corresponding
to ShHSS

c /Shc � 0.28 in the case of a cylinder of diameter D = 20 mm.
We also performed long experiments close to the HSS onset. In this condition, we observe another

erosion pattern presented in Fig. 2(b). This pattern is observed downstream of the cylinder with two
side-by-side elongated holes, as shown by the topography measurements in Fig. 2(e). This pattern
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FIG. 3. Average vorticity field ω downstream of a cylinder of diameter D = 20 mm. Particle image
velocimetry measurements are performed in a horizontal plane located 5 mm above a rough nonerodible bed,
for Sh/Shc � 0.22 and ReD � 1600.

is called wake scour (WS) pattern in the following. In Fig. 2(b) the Shields number is Sh � 2.8,
corresponding to the reduced Shields number Sh/Shc � 0.37, just a little above the HSS onset,
measured at ShHSS

c /Shc � 0.28. This explains why a weak HSS close to the cylinder is also observed
here. Wake scour is here stronger than HSS, with two ovoid holes, symmetrical with respect to the
x axis, measuring about 2D in length and 1D in width, and located at (x,y) � (2D, ± 1D). For
larger flow values, the development of the HSS pattern is quicker, so it progressively impedes the
WS development. We should note that a partial WS pattern can be observed in Fig. 2(d), with two
lateral elongated holes downstream of the HSS at (x,y) � (4D, ± 1.5D). For smaller flow values,
WS vanishes for the critical value ShWS

c � 0.9, corresponding to ShWS
c /Shc � 0.12 in the case of a

cylinder of diameter D = 20 mm.
For a rather large value of Sh such as the case presented in Fig. 2(d) (Sh/Shc � 0.85), the HSS

development is not affected by WS, but the WS development is in contrast strongly affected by
HSS. Therefore, to characterize the WS independently of HSS, we put a rigid base at the bottom
of the cylinder in a rectangular zone of width W and length 2D for −3D/2 � x � D/2 as shown
in Fig. 2(c). In that case, the HSS development is inhibited as the granular bed cannot be eroded
from streamlines contraction and horseshoe vortex close to the cylinder. By visual observation of the
grain motion and from PIV measurements of the flow in several horizontal planes downstream of the
cylinder, we believe that the WS pattern arises from the unsteady Bénard–von Kármán lee vortices.
The WS pattern first develops just downstream of the cylinder, where the vorticity is maximal as
illustrated in Fig. 3, before extending into two elongated holes. We performed PIV measurements
5 mm above a rough nonerodible bed so that the velocity field corresponds to the one existing
before any bed deformation at the beginning of an erosion experiment. The regions of large vorticity
correspond to the vortex shedding area, where grains are carried by vortices and advected downstream,
thus initializing the formation of the WS pattern. At high Reynolds numbers, far from the Bénard–von
Kármán onset, the maximum vorticity is observed at a distance of about 5D downstream if an infinite
cylinder [21]. However, in the present case where the cylinder emerges from the granular bed, the
maximum vorticity occurs at a smaller distance. Similar erosion patterns have already been observed
downstream of a cylinder but were attributed to a secondary effect of the HSS development far above
the HSS onset [22]. However, the WS pattern reported here has been shown to exist without any HSS
development and is thus not linked to HSS.

IV. EROSION THRESHOLDS AND DYNAMICS

Onset measurements for HSS are reported in Fig. 4 for different cylinder diameters in the range
5 � D � 30 mm. The erosion threshold for HSS, ShHSS

c , does not depend much on D in this range.
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FIG. 4. Critical values of the reduced Shields number Sh/Shc for the scour onset as a function of the cylinder
to grain size ratio D/d and cylinder to channel size ratio D/W for the two observed patterns: HSS (◦) and WS
(�). The horizontal dashed line Sh/Shc = 0 corresponds to the onset of erosion without any cylinder. The curved
dashed and solid lines correspond to power laws Sh/Shc = α(D/d)β with the best-fitting values α = 0.73 and
β = −0.23 for HSS (- - -) and α = 1.60 and β = −0.58 ± 0.1 for WS (—).

Yet a gradual increase is observed from the value ShHSS
c /Shc � 0.25 for the largest cylinder to

ShHSS
c /Shc � 0.38 for the smallest one. Onset measurements for WS, ShWS

c , are also reported and
follow a similar trend to the HSS for all the cylinder diameters considered, with smaller values
from about 0.10 to 0.29. Below ShWS

c , no erosion occurs on the bed surface around or far from the
cylinder. A power law Sh/Shc = α(D/d)β passes rather well through each data set with the fitting
values α = 0.73 and β = −0.23 for HSS and α = 1.60 and β = −0.58 for WS. The cylinder size
has thus a stronger influence on WS onset than on HS onset.

To rationalize the location and the onset of the HSS pattern, we observe that erosion does not occur
first upstream of the cylinder at (r,θ ) � (D/2, π ), but at the cylinder sides (r,θ ) � (D/2, ± 7 π/10).
This location corresponds to the region where the shear stress exerted on the granular bed is the largest,
due to both the streamline contraction and horseshoe vortex [14]. A two-dimensional potential flow
theory around an infinite cylinder can capture the streamlines contraction effect. In an unbounded
domain, the stream function is ψ = Ur sin θ [1 − (D/2r)2] and leads to a maximal velocity umax =
2U , corresponding to the azimuthal velocity uθ = −∂ψ/∂r at (r,θ ) = (D/2, ± π/2) [23]. Since the
local erosion takes place at the critical velocity Uc, the incoming velocity far from the cylinder that
corresponds to the HSS onset would be UHSS

c = Uc/2. Therefore, the threshold value of the global
Shields number would be ShHSS

c = Shc/4. The critical value ShHSS
c /Shc = 0.25 independent of the

cylinder diameter given by this very simplified potential flow approach is close to the experimental
measurements. Let us now explore some possible effect of the channel width by still considering a
two-dimensional potential flow around an infinite cylinder but now at midgap between two lateral
walls at the distance W . Following Lamb’s approach [24], with a uniform flow across a periodic
line of dipoles at the distance W from one another which leads to an analogous perturbed flow, the
maximal flow velocity umax still occurs at (r,θ ) = (D/2, ± π/2) but depends on the blockage ratio
D/W as

umax = U

[
1 + π

D

W

tan(πD/2W )

1 − cos(πD/W )

]
. (1)

For vanishing blockage ratio (D/W → 0), we recover the value umax = 2U , whereas for our largest
blockage ratio D/W = 0.3, this modeling leads to a slightly larger velocity umax = 2.16U , which
corresponds to the critical reduced Shields number parameter ShHSS

c /Shc = 0.21 slightly smaller than
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FIG. 5. Dimensionless scour depth ξm/D close to a cylinder of diameter D = 10 mm as a function of the
dimensionless time t∗ = t(ρd/�ρg)−1/2(D/d)−2 for the HSS pattern at Sh/Shc � 0.69 (◦) and the WS pattern
at Sh/Shc � 0.40 (�) and Sh/Shc � 0.69 (�) by using a rigid bed at the bottom of the cylinder.

the value 0.25 predicted for vanishing D/W . Note that this modeling leads to some noncircularity of
the cylinder for a very large blockage ratio. For our largest ratio D/W = 0.3, the noncircularity is only
0.2%. From the present analysis of the finite size of the channel, the variation of ShHSS

c is thus expected
to be only 15%, which is not sufficient to explain the 35% variation measured experimentally. A
little more refined two-dimensional theory taking into account the boundary layer development at
the cylinder surface would not lead to a significantly different prediction, and a three-dimensional
theory taking into account the boundary layer on the bottom plate and the horseshoe vortex is much
more complex. However, the present simple two-dimensional potential flow catches the good first
order of the HSS onset, which means that HSS arises mainly from the streamlines contraction.

From the time evolution ξ (x,y,t) of the bed surface reported in Figs. 2(e) and 2(f) for the WS
and HSS, respectively, we extract the time evolution of the maximum scour depth ξm(t). The results
are reported in Fig. 5 for WS pattern at Sh/Shc � 0.40 and for HSS and WS patterns at the same
erosion parameter Sh/Shc � 0.69. For both erosion patterns, the scouring depth ξm increases with
time and seems to saturate at a plateau value ξ∞ at large times. In Fig. 5, scouring depth ξm and
time t are made dimensionless with the cylinder diameter D and with the typical time scale t∗ =
(ρd/�ρg)1/2(D/d)2 � 6 s, corresponding to an inertial (turbulent) grain transport over the typical
eroded area D2 [3]. The long-time depth of the two scouring patterns obtained here at a similar
value Sh/Shc � 0.69 is ξ∞ � −1.4D for HSS and ξ∞ � −0.8D for WS. The characteristic time
of evolution of the two scouring patterns is τ � 0.35 h � 210t∗ for HSS and τ � 2 h � 1220t∗ for
WS. Therefore, at Sh/Shc � 0.69, far above both the WS and HSS onsets, the HSS development
occurs faster and over a larger depth. Since the time evolution of the maximal scour depth cannot be
fitted by a simple law, τ is here defined as the time necessary to reach half of the plateau value.

The dimensionless depth at long time ξ∞/D and the dimensionless characteristic time of scouring
τ/t∗ are shown in Fig. 6 as a function of the reduced Shields number Sh/Shc. For decreasing Sh,
we observe that the efficiency of scouring processes decreases, so |ξ∞| decreases and τ increases.
At the threshold, |ξ∞| vanishes whereas τ diverges, so 1/τ also vanishes. Despite the dispersion
of the experimental data, |ξ∞| and 1/τ may be approximated by a linear increase of Sh above the
corresponding critical value at onset ShHSS

c or ShWS
c measured previously (Fig. 4). With the linear

fits shown in Fig. 6, we see that WS is stronger than HSS for 0.2 � Sh � 0.4 thus in a small region
compared to the large zone 0.4 � Sh � 1 where HSS is stronger than WS.

By an interesting scaling analysis of the complex flow around vertical cylinder interacting with
a horizontal granular bed within the turbulent regime, Manes and Brocchini [15] have derived the
simple scaling |ξ∞|/d ∼ Sh(D/d)2/3 for the HSS pattern. Such a scaling is consistent with the
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FIG. 6. Evolution of (a) the dimensionless long-time scour depth |ξ∞|/D and (b) the inverse of the
dimensionless characteristic time evolution of scouring t∗/τ in the vicinity of a cylinder of diameter D = 10 mm
as a function of the reduced Shields number Sh/Shc for the HSS pattern (◦) and the WS pattern without (�) or
with (�) a nonerodible base at the bottom of the cylinder.

cloud of data they collected from the literature with large hydraulic channel facilities. Our own ξ∞
experimental data are within this cloud of collected data. We believe, however, that some of the
dispersion of the collected data relative to the theoretical scaling proposed in [15] arises from the
fact that no erosion threshold is taken into account in this scaling. As a matter of fact, we see that
our ξ∞ data scale about linearly with Sh − ShHSS

c but not with Sh. Note that the theoretical scaling
of [15] corresponds to |ξ∞/D| ∼ Sh(D/d)−1/3 with thus a weak dependence on D/d in the range
D/d � 1 where this scaling is valid. It is worth noting that our measurements for the critical Shields
number for HSS onset present also only a weak dependence on D/d with a power exponent −0.23
not very far from −1/3.

V. CONCLUSION

In summary, using a laboratory setup, we highlighted in this paper the competitive dynamics of two
erosion patterns in the vicinity of a vertical cylinder emerging from a granular bed when submitted
to a steady flow in clear-water conditions. Our experiments revealed that the onset of the usual HSS
pattern, which arises at the bottom of the cylinder, does not depend significantly on the cylinder
diameter and the threshold value ShHSS

c can be rationalized considering the streamline contraction
inducing a more intense erosive strength. Slightly below the onset for HSS, we measured the onset
of another erosion pattern designed as WS, which appears downstream of the cylinder and exhibits a
peculiar geometry, two ovoid holes. This pattern reported here is related to the local erosive action of
the downstream unsteady lee vortices in the cylinder wake. Wake scour is stronger than HSS in only a
very small region of flow conditions. The three-dimensional flow around the cylinder and the complex
granular rheology make a quantitative modeling and numerical simulations challenging [14].
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Correction: The previously published Figure 5 contained an axis-label error and was replaced.
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