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The generation of mean flows is a long-standing issue in rotating fluids. Motivated by
planetary objects, we consider here a rapidly rotating fluid-filled spheroid, which is subject
to weak perturbations of either the boundary (e.g. tides) or the rotation vector (e.g. in
direction by precession, or in magnitude by longitudinal librations). Using boundary-layer
theory, we determine the mean zonal flows generated by nonlinear interactions within
the viscous Ekman layer. These flows are of interest because they survive in the relevant
planetary regime of both vanishing forcings and viscous effects. We extend the theory
to take into account (i) the combination of spatial and temporal perturbations, providing
new mechanically driven zonal flows (e.g. driven by latitudinal librations), and (ii) the
spheroidal geometry relevant for planetary bodies. Wherever possible, our analytical
predictions are validated with direct numerical simulations. The theoretical solutions are
in good quantitative agreement with the simulations, with expected discrepancies (zonal
jets) in the presence of inertial waves generated at the critical latitudes (as for precession).
Moreover, we find that the mean zonal flows can be strongly affected in spheroids. Guided
by planetary applications, we also revisit the scaling laws for the geostrophic shear layers
at the critical latitudes, and the influence of a solid inner core.

Key words: rotating flows

1. Introduction

1.1. Physical context
Global rotation tends to sustain two-dimensional mean flows that are almost invariant
along the rotation axis in rapidly rotating systems. These mean flows are indeed often
obtained in various models of rotating turbulence (e.g. Guervilly, Hughes & Jones 2014;
Godeferd & Moisy 2015) and planetary core flows (e.g. Aubert 2005; Schaeffer et al.
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2017; Monville et al. 2019). In the latter context, they are believed to play an important
role in the exchange of angular momentum between liquid layers and surrounding solid
domains (e.g. Roberts & Aurnou 2012), which drives the long-term dynamical evolution
of planetary bodies. Moreover, mean flows could be unstable in the rapidly rotating regime
(e.g. Favier et al. 2014; Sauret, Le Bars & Le Gal 2014), which could sustain space-filling
turbulence and mixing. Therefore, understanding the formation of mean flows is essential
to model the fluid dynamics of many rapidly rotating systems.

A commonly observed feature of geostrophic flows is that they are spontaneously
generated by nonlinear effects, for instance involving small-scale eddies (e.g. Aubert,
Jung & Swinney 2002; Christensen 2002) or waves. Rapidly rotating fluids are indeed
characterised by the ubiquitous presence of inertial waves (e.g. Zhang & Liao 2017),
whose restoring force is the Coriolis force. However, Greenspan (1969) demonstrated that
inviscid nonlinear interactions of inertial waves do not produce significant geostrophic
flows in the rapidly rotating regime. The combination of some nonlinear interactions
and viscous effects is thus essential to generate mean geostrophic flows, and various
wave-induced mechanisms have been explored. Local wave interactions in the weakly
viscous interior could transfer energy from the inertial waves to the geostrophic flows,
either through wave–wave interactions (e.g. Newell 1969; Smith & Waleffe 1999)
or wave-induced secondary instabilities (e.g. Kerswell 1999; Brunet, Gallet & Cortet
2020). The aforementioned mechanisms have been explored in Cartesian or cylindrical
geometries for computational simplicity. In these previous studies, the container depth
does not vary in the direction perpendicular to the rotation axis. However, this so-called
beta effect is known to be important for planetary configurations (Busse 1970), and also
strongly modifies the geostrophic flows (Greenspan 1968). Thus, although these local
mechanisms are certainly generic, the geostrophic flows investigated in these studies are
not directly relevant for (large-scale) planetary core flows.

Another mechanism, which is relevant for planetary applications, has been proposed
by Busse (1968b). Most planetary fluid bodies are subject to mechanical forcings
(e.g. librations, precession or tides) because of the presence of orbital companions.
Mechanical forcings have received a renewed interest in fluid mechanics, because of their
non-negligible contribution in the internal fluid dynamics of planetary bodies (e.g. Le
Bars, Cébron & Le Gal 2015). They are indeed responsible for differential motions of
the rigid boundary with respect to the fluid. These motions can be transmitted to the
bulk by viscous coupling, generating inertial waves (e.g. Aldridge & Toomre 1969; Noir
et al. 2001a; Sauret, Cébron & Le Bars 2013), and mean geostrophic flows resulting
from nonlinear interactions of the flows within the Ekman boundary layer (as considered
in Busse 1968b). The latter mechanism has then been confirmed experimentally and
numerically for various mechanical forcings (e.g. Noir, Jault & Cardin 2001b; Noir et al.
2012; Lin & Noir 2020).

1.2. Motivations
Rotating flows are usually characterised by the Ekman number E, which compares
viscous to rotational effects. As outlined in Busse (1968b, 2010), mechanical forcings of
typical amplitude O(ε) can induce a mean zonal flow in the bulk of typical amplitude
O(ε2), which is independent of E in the regime E → 0 (as shown below). Hence, this
mechanism gives a non-zero bulk flow driven by viscous effects that survives in the
planetary regime of vanishing viscosity E � 1. However, most studies about mean zonal
flows in spherical-like domains have employed laboratory experiments or direct numerical
simulations (DNS) with moderate values E ≥ 10−6, whereas rapidly rotating planetary
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Figure 1. Comparison of the azimuthal component of the time-averaged zonal flow 〈V̄φ〉, as a function of
cylindrical radius s in the equatorial plane z0 = 0, between theory (dashed curves) and experiments/numerics
(solid curves). (a) Libration-driven zonal flows with dimensionless angular frequency ω = 0.1 in a full
sphere, extracted from figure 3(b) and figure 4 in Sauret et al. (2010). Experiment with E = 1.15 × 10−5,
and ε = 0.08. DNS with E = 5 × 10−5, and ε = 0.2. The vertical axis has been normalised by ε2, where ε is
the dimensionless forcing amplitude. (b) Precession-driven zonal flows extracted from figure 8 in Noir et al.
(2001b).

flows are characterised by much smaller values (typically E = 10−15 − 10−12). Thus, since
viscous effects are overestimated in experimental or numerical works, an analytical study
is directly relevant to obtain rigorous results about zonal flows in the planetary regime.

Only a few theoretical studies have hitherto investigated mean zonal flows driven
by mechanical forcings. The case of a rotating cylindrical tank subject to longitudinal
librations has been recently revisited analytically (Sauret 2015), and the theory has been
convincingly compared with experiments (Wang 1970) and simulations (Sauret et al.
2012). However, a successful validation of mechanically driven zonal flows is generally
missing in spherical and ellipsoidal geometries when the Ekman number E is vanishingly
small. For instance, considering longitudinal librations in spheres, two different results
have been obtained for low libration frequencies (Busse 2010; Sauret & Le Dizès 2013).
As shown in figure 1(a), they can both explain the experimental results of Sauret et al.
(2010). Concerning precession, experiments (Malkus 1968) or numerical simulations
(Noir et al. 2001b) have never properly validated the theory of Busse (1968b), as illustrated
in figure 1(b). Similarly, the theoretical zonal flows driven by tides (Suess 1971) do
not agree with experimental findings (as we will show below). Consequently, theoretical
predictions remain to be thoroughly validated before they can be extrapolated for planets.

Finally, singularities have been found in the boundary-layer calculation due to the
presence of the critical latitudes, where the flows should be smoothed out by additional
viscous effects (e.g. Kerswell 1995; Kida 2011) not taken into account in the theory (as in
Busse 1968b; Sauret et al. 2013). Around these locations, the mean flows are known to take
the form of narrow geostrophic shear layers aligned with the axis of rotation (e.g. Calkins
et al. 2010). The variations of the geostrophic shear amplitude with the Ekman number
are, however, still disputed (Noir et al. 2001b; Lin & Noir 2020), such that planetary
extrapolations remain speculative. Thus, targeted DNS in the regime E � 1 are also worth
performing to explore the behaviour of the geostrophic shear layers.
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Solving the full mathematical problem of mechanically driven flows is complex, but
analytical progress can be made for planetary parameters (as undertaken in Busse 1968b,
2010). Since planetary interiors are characterised by small forcing amplitudes ε � 1 and
small viscous effects E � 1, we employ asymptotic theory in ε and E. To do so, we
assume that the spin-up time scale of the fluid (Greenspan 1968) is much longer than the
characteristic time scale of the mechanical forcing (in the fluid rotating frame), such that
no global spin-up of the fluid will occur during the dynamics. Following previous works
on mean zonal flows (e.g. Busse 2010; Sauret & Le Dizès 2013), we also neglect in the
theory viscous effects at the critical latitudes (associated with internal shear layers), and
our theoretical bulk basic flow is taken as a solid-body rotation (for its spatial dependency).
Thus, we assume that no inertial mode is excited by the forcing on top of this basic flow
(which is exact if the forcing frequency is larger than twice the mean fluid rotation rate,
e.g. Greenspan 1968). We also conduct DNS, where these effects are fully taken into
account, to validate the asymptotic theory and to revisit some scaling laws proposed for
planetary extrapolations (e.g. Noir et al. 2001b; Lin & Noir 2020). The paper is organised
as follows. We introduce the problem and the methods in § 2. We describe the asymptotic
weakly nonlinear analysis in § 3, and present the theoretical and numerical results in § 4.
We discuss the results in § 5, and we conclude the paper in § 6.

2. Description of the problem and methods

2.1. Mathematical description
We consider an incompressible and homogeneous Newtonian fluid of kinematic viscosity
ν and density ρ, enclosed in a spheroidal container of semi-axis length rpol along the
revolution axis, while the other one is noted req (the spheroid is oblate when req > rpol,
and prolate when req < rpol). We introduce the Cartesian basis vector (x̂I, ŷI, ẑI) of the
inertial frame, whose origin O is the centre of the spheroidal container. In the following,
we work in a frame of reference where the spheroidal shape of the container boundary
is stationary. We use a Cartesian basis vectors (x̂R, ŷR, ẑR) where ẑR is aligned with the
spheroid revolution axis, as illustrated in figure 2. The rotation vector of this reference
frame, denoted Ω∗

c(t) in the following, is along ẑI in the absence of perturbation. In this
reference frame, the velocity V ∗ satisfies the no-slip boundary condition (BC) on Σ

V ∗ · n̂|Σ = 0, V ∗ × n̂|Σ = V ∗
Σ, (2.1a,b)

where n̂ is the unit vector normal to the boundary, and V ∗
Σ is mainly a solid-body rotation

at Ω∗
0 around ẑI , possibly perturbed by a small flow v∗

Σ . We thus consider

V ∗
Σ = Ω∗

0 ẑR × r∗ + v∗
Σ, (2.2)

where r∗ is the position vector, and v∗
Σ is an imposed tangential velocity related to the

considered mechanical forcing. One can choose a frame of reference where the spheroidal
boundary is steady, that is with V ∗

Σ = 0. This frame is referred as the wall frame, or
the mantle frame in planetary sciences. We denote the associated Cartesian basis vectors
(x̂M, ŷM, ẑM) centred on O, where ẑM is along the spheroid revolution axis.

We work below using dimensionless units, denoting the dimensionless variables without
the superscript ∗ for the sake of clarity. We choose req as the length scale, and |Ω∗

s |−1 =
(|Ω∗

0 | + |Ω̄∗
c |)−1 as the time scale, where Ω̄∗

c is the time average of Ω∗
c . In the reference

916 A39-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

22
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
B 

Li
br

ar
ie

s,
 o

n 
09

 Ju
n 

20
21

 a
t 2

2:
11

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.220
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Mean zonal flows in rotating spheroids
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ŷR
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Figure 2. (a) Spheroidal geometry of the forced problem. (b) Equatorial (circular) section.

frame rotating at Ωc, the dimensionless fluid velocity V is governed by

∂tV + (V ·∇)V + 2Ωc × V + Ω̇c × r = −∇Π + E∇2V , ∇ · V = 0, (2.3a,b)

where Π is the reduced pressure (taking into account the centrifugal effects), Ω̇c = dtΩc
is the time derivative of Ωc, ∂tV is the partial time derivative of V and E = ν/(Ω∗

s r2
eq) is

the (dimensionless) Ekman number.

2.2. Mechanical forcings
The inviscid bulk flow driven by the forcing is noted U . In the absence of any mechanical
forcings, that is with V Σ = 0 and Ω̇c = 0, U reduces to a solid-body rotation with
the angular velocity Ω0ẑR. However, the latter flow is perturbed by weak harmonic
perturbations generated by mechanical forcings. The general framework described in this
study allows us to consider various mechanical forcings that are described below.

(i) Multipolar tidal-like forcing corresponds to Ωc = ΩcẑR (with here ẑR = ẑI), and

vΣ = εsq cos(mφ) cos(ωt)ẑR × r, (2.4)

with the azimuthal angle φ with respect to ẑR (see figure 2), the forcing amplitude ε

and the azimuthal wavenumber m of the spatial deformation (this boundary velocity
has also been considered by Greenspan 1968, see e.g. his equation 2.14.2). In our
calculation, q is taken as an independent parameter but, for regularity along the
rotation axis (Lewis & Bellan 1990), and to consider multipolar flows (e.g. Cébron,
Vantieghem & Herreman 2014; Sauret 2015), we must consider q = |m − 1|. In
expression (2.4), the case m = 2, Ωc = ω = 0 has been considered in Suess (1971),
which is extended here to account for both multipolar deformations and oscillations
at the frequency ω (e.g. Sauret & Le Dizès 2013).

(ii) Longitudinal librations are investigated with Ωs = 1 and ẑR = ẑI . Introducing the
forcing amplitude ε, rotating spheroids can be studied, in an equivalent way, either
(i) in the mantle frame of reference (e.g. Favier et al. 2015) with Ω0 = 0, Ωc =
[1 + ε cos(ωt)]ẑR and V Σ = 0, (ii) in the mean rotating frame of reference (e.g.
Busse 2010) with Ω0 = 0, Ωc = ẑR and V Σ = ε cos(ωt)ẑR × r or (iii) in the inertial
frame of reference with Ω0 = 1, Ωc = 0 and V Σ = [1 + ε cos(ωt)]ẑR × r. Note
that the case (ii) can actually be recovered with the particular case m = Ω0 = 0 of
the multipolar tidal-like forcing.

(iii) Latitudinal librations are modelled with Ω0 = 0, and the general case of a rigid
spheroidal container can only be studied in the mantle frame, where the Σ is
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stationary and V Σ = 0. The corresponding forcing in this frame is (see Vantieghem,
Cébron & Noir 2015)

Ωc = Θ̇ x̂M + sin(Θ)ŷM + cos(Θ)ẑM, (2.5a)

Ω̇c = Θ̈ x̂M + Θ̇ cos(Θ)ŷM − Θ̇ sin(Θ)ẑM, (2.5b)

where Θ = (ε/ω) sin(ωt) is the instantaneous libration angle, and where ε is the
forcing amplitude. In the limit ε � 1 considered for the analytical calculations
performed in this work, these expressions read (at first order in ε)

Ωc = ε[cos(ωt)x̂M + ω−1 sin(ωt)ŷM] + ẑM, (2.6a)

Ω̇c = ε[−ω sin(ωt)x̂M + cos(ωt)ŷM]. (2.6b)

Note that the particular case of the sphere can also be studied analytically
and numerically in the mean rotating frame with Ωc = ẑR = ẑI and V Σ =
ε cos(ωt)x̂R × r.

(iv) Precession, can be considered in the precession frame (e.g. Cébron et al. 2019) by
using V Σ = Ω0ẑR × r with Ω0 = (1 + Po)

−1, and

Ωc = Ω0Po[sin(α)x̂R + cos(α)ẑR], (2.7)

where α is the precession angle, and Po is the Poincaré number (ratio of the
precession and the boundary rotation rates). The associated bulk flow U is then
mainly a tilted (stationary) solid-body rotation U = ωf × r. For weak precession
forcing, ωf ≈ (1 + Po)

−1ẑR at the order ε, where ε characterises the small
misalignment of ωf and ẑR (see further details in the seminal work of Busse 1968b).

2.3. Numerical modelling
We integrate equations (2.3a,b) using two open-source codes. Equations in spherical
geometries are solved using the parallel pseudo-spectral code XSHELLS (e.g. Schaeffer
et al. 2017), based on a poloidal–toroidal decomposition of the velocity field onto spherical
harmonics of degree l ≤ lmax and azimuthal wavenumber m ≤ mmax using the SHTNS

library (Schaeffer 2013), and second-order finite differences with Nr points used in the
radial direction. The code has been validated for full-sphere computations, including
flows crossing the origin (Marti 2014), and details about the implementation at the
centre are given in appendix A. To solve the dynamical equations, the code can use
several semi-implicit time-stepping schemes, which treat the diffusive terms implicitly
and the other ones explicitly. Most of the simulations have been performed using the
accurate semi-implicit backward difference formula of order 3 (SBDF3, see Ascher, Ruuth
& Wetton 1995). The typical spatial resolution at E = 10−7 is Nr = 576, lmax = 159,
mmax = 5.

In spheroidal geometries, we solve the nonlinear equations in their weak variational form
using the spectral-element code NEK5000 (e.g. Fischer et al. 2007), which combines the
geometrical flexibility of finite element methods with the accuracy of spectral methods.
The computational domain is made of E = 3584 non-overlapping hexahedral elements in
coreless geometries (or E = 3840 in spheroidal shells, see below). Moreover, the velocity
(and pressure) is represented within each element as Lagrange polynomials of order
N = 13 (respectively, N − 2) on the Gauss–Lobatto–Legendre (Gauss–Legendre) points.
Temporal discretisation is accomplished by a third-order method, based on an adaptive and
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Mean zonal flows in rotating spheroids

semi-implicit scheme in which the nonlinear and Coriolis terms are treated explicitly, and
the remaining linear terms are treated implicitly. We have checked the numerical accuracy
in targeted simulations by varying the polynomial order from N = 13 to N = 15, and
found that the resolution of the Ekman boundary layers is appropriate with at least ten
grid points within the layer.

2.4. Extracting the mean zonal flows from DNS
In the planetary limit ε � 1 considered in this work, the forced flow is mainly a solid-body
rotation in the bulk for all the aforementioned forcings. Consequently, when E → 0, the
mean zonal flows tend to geostrophic flows, which are invariant along the fluid rotation
axis and are established on the dimensionless spin-up time scale E−1/2 (Greenspan 1968).
Thus, for every DNS, we have simulated the dynamics over several spin-up time scales,
ensuring that the mean zonal flows are well established. We have also used typical time
steps dt = 10−3 − 10−2, which were sufficient to integrate the dynamics.

The mean zonal flow is computed from the three-dimensional flow V by considering the
cylindrical radial variation of 〈V̄φ〉(s, z = z0) in the horizontal plane z = z0, where X̄ and
〈X〉 are the time and azimuthal averages of the quantity X (respectively). With XSHELLS,
the mean zonal flow is computed from the time-averaged m = 0 component of the toroidal
scalar in the plane z = z0. In spheroids, the azimuthal component 〈V̄φ〉 of the mean zonal
flow is estimated as (Favier et al. 2015)

〈V̄φ〉(s, z = z0) � 1
N

∑
|z−z0|≤zmax

∑
0≤φ≤2π

∑
s−ds<s<s+ds

V̄ · φ̂, (2.8)

where N is the total number of grid points used to evaluate expression (2.8). The NEK5000
DNS have been performed at E ≥ 10−6, contrary to the XSHELLS DNS performed at
E ≥ 10−7. Hence, the NEK5000 DNS are more influenced by Ekman pumping when
approaching the boundary. To properly estimate the geostrophic components, we z-average
the flows over the vertical positions |z − z0| ≤ zmax. In the XSHELLS DNS, the mean
zonal flow is defined as the value of the m = 0 azimuthal velocity in the plane z = z0.
To be consistent, we have here considered zmax = 0.1. We have also checked that the
mean flow computations are unchanged when using zmax/rpol ≤ 0.4 − 0.5. Moreover, the
approximate number of points in each direction in the NEK5000 DNS is here E1/3N ≈
200. We have thus averaged the azimuthal component over one hundred different shells
along the cylindrical radius s, and over the vertical positions |z − z0| ≤ 0.1. We show
in figure 3 the mean zonal flows computed from DNS in spheres with E = 10−4 and
ε = 10−2, with NEK5000 in the mantle frame of reference and with XSHELLS in the frame
rotating at ẑR. We find a very good agreement between the two codes, which validates our
procedure to compute the mean zonal flows.

2.5. Perturbation approach
Current DNS cannot be performed at the extremely small values of E reached in planetary
liquid cores. Thus, we solve analytically equations (2.3a,b) to gain physical insights
into the asymptotic regime E � 1. We assume that there is no significant shear in the
interior and use viscous boundary-layer theory (BLT, e.g. Greenspan 1968) to write
[V , Π ] = [U, P] + [u, p], where U describes the interior flow for which viscous effects
can be neglected, and a boundary-layer flow u. The latter contribution takes into account
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Figure 3. Azimuthal component of the time-averaged zonal flow 〈V̄φ〉/ε2 as a function of cylindrical radius s
in the equatorial plane z0 = 0. DNS in a sphere with E = 10−4, ε = 10−2 and forcing frequency ω = π, using
NEK5000 (red solid curves) and XSHELLS (blue dashed curves). (a) Longitudinal librations. (b) Latitudinal
librations.

the viscous effects near the outer boundary, and decays exponentially towards the interior
of the container. The governing equations, obtained from (2.3a,b), are in the limit E � 1

∂tU + (U · ∇)U + 2Ωc × U + Ω̇c × r = −∇P, (2.9a)

∂tu + (u · ∇)U + (u + U) · ∇u + 2Ωc × u = −∇p + E∇2u. (2.9b)

Within the boundary layer, we introduce the stretched coordinate ζ = (r|Σ − r) · n̂/E1/2,
where r|Σ is the position vector on the boundary Σ . We also assume that the field gradients
along the boundary are negligible compared to the gradients normal to the boundary, that
is n̂ · ∇ � −E1/2∂ζ (e.g. Greenspan 1968). Then, the mass conservation equation reduces
to its usual boundary-layer approximation (see p. 25 in Greenspan 1968)

∇ · u � −E1/2∂ζ (u · n̂) + n̂ · ∇ × (n̂ × u) = 0. (2.10)

To solve the BLT equations, we use asymptotic theory with the small forcing amplitude
ε � 1. Noting V 0

Σ = Ω0ẑR × r, we write

V Σ = V 0
Σ + εV 1

Σ + ε2V 2
Σ + · · · , Ωc = Ω0

c ẑR + εΩ1
c + ε2Ω2

c + · · · , (2.11a,b)

where the time average of Ωc is Ω̄c = Ω0
c ẑR (since the perturbations are harmonic). The

BC (2.1a,b) imposes then V k
Σ · n̂ = 0 at every order εk. To perform the boundary-layer

and perturbation calculations, we also expand [V , Π ] in double power series involving
the asymptotic parameters ε � 1 and E � 1. Note that we formally neglect the possible
critical latitudes (e.g. Kerswell 1995), although they can modify the mean zonal flows (as
previously found in cylinders by Sauret et al. 2012, see also below). Since the Ekman layer
scales as E1/2 outside the critical latitudes, we use the double power series expansions for
all our unknowns,

[U, u] =
+∞∑
i,j=0

E
1
2 iε j[U j

i , u j
i ], [P, p] =

+∞∑
i,j=0

E
1
2 iε j[P j

i , p j
i ]. (2.12a,b)

The substitution of (2.12a,b) in the governing equations (2.9) and (2.10) leads to a sequence
of equations for the interior and boundary-layer flows. We anticipate that our flows may
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Mean zonal flows in rotating spheroids

also a priori vary slowly on the time scale τ = O(E−1/2) and, thus, we also expand below
the time in powers of E−1/2 (as e.g. done when calculating the Ekman layer damping of
inertial modes, see Greenspan 1968).

2.6. Governing equations
At the leading order ε0E0, a natural solution of the interior zeroth-order equation is U0

0 =
Ω0ẑR × r, which satisfies the BC since Ω0

c is constant and vΣ = 0 at this order. Since U0
0

verifies the BC, we obtain that u0
0 = 0.

Noting that, for an arbitrary velocity field v, we have

(U0
0 · ∇)v + (v · ∇)U0

0 = 2Ω0ẑR × v + Ω0∂φv, (2.13)

the first-order interior flow equations at the order εE0 are then

(∂t + Ω0∂φ)U1
0 + 2Ω0

s ẑR × U1
0 + 2Ω1

c × U0
0 + Ω̇1

c × r = −∇P1
0, (2.14)

together with the divergenceless condition ∇ · U1
0 = 0 and Ω0

s = Ω0
c + Ω0, where the BC

is U1
0 · n̂|Σ = 0. Considering now the boundary-layer flows, we first integrate equation

(2.10) using the BC uk
0(ζ ) → 0 when ζ → +∞ and, since the first term is of order

E−1/2, we obtain the zeroth-order condition for the boundary-layer flow uk
0 · n̂ = 0 at every

order εk inside the boundary layer (since V k
Σ · n̂ = vk

Σ · n̂ = 0). Then, the boundary-layer
equation at the order εE0 is

Lu1
0 = −∂ζ p1

1n̂, u1
0 + U1

0 = V 1
Σ on Σ, (2.15a,b)

with the linear operator Lu1
0 = −(∂t + Ω0∂φ)u1

0 − 2Ω0
s ẑR × u1

0 + ∂2
ζ ζ u1

0.
At the order εE1/2, the so-called Ekman circulation U1

1 is governed by

(∂t + Ω0∂φ)U1
1 + ∂τ U1

0 + 2Ω0
s ẑR × U1

1 = −∇P1
1, u1

1 + U1
1 = V 1

Σ on Σ, (2.16a,b)

and the divergenceless condition ∇ · U1
1 = 0, where we have anticipated that U0

1, and
thus u0

1, can be set to zero without loss of generality (the flows are forced by the forcing
of amplitude ε, and we will see that all our equations can be verified with the solution
U0

1 = u0
1 = 0). At this order, the mass conservation imposes

∂ζ (u1
1 · n̂) − n̂ · ∇ × (n̂ × u1

0) = 0, (2.17)

which allows us to obtain easily the Ekman pumping u1
1 = u1

1n̂ from u1
0.

At next order ε2E0, the bulk flow is divergenceless ∇ · U2
0 = 0 and given by

(∂t + Ω0∂φ)U2
0 + 2Ω0

s ẑR × U2
0 = −∇P2

0 − (U1
0 · ∇)U1

0 − 2Ω1
c × U1

0

− 2Ω2
c × U0

0 − Ω̇2
c × r, (2.18)

with the BC U2
0 · n̂ = 0 on Σ . The boundary-layer equations are

Lu2
0 = −n̂∂ζ p2

1 + (u1
0 · ∇)u1

0 − (u1
1 + U1

1) · n̂∂ζ u1
0 + 2Ω1

c × u1
0

+ (U1
0 · ∇)u1

0 + (u1
0 · ∇)U1

0, (2.19a)

u2
0 + U2

0 = V 2
Σ on Σ. (2.19b)
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In (2.18) and (2.19) governing the order ε2E0, U1
1 and u1

1 only appear via their normal
components in the boundary layer. Then, (2.17) gives directly u1

1 · n̂, and thus U1
1 · n̂ =

−u1
1 · n̂|ζ=0 via the BC (u1

1 + U1
1) · n̂ = 0 on Σ .

Finally, the interior flow Uk
0 at every order εk will be decomposed as Uk

0 = PUk
0 + HUk

0,
where PUk

0 is the particular solution forced by non-homogeneous terms, and HU2
0 is the

solution of the homogeneous part of the equation that is required to satisfy the BC for the
total flow. We will actually see that HU1

0 = 0 in certain cases (e.g. in the fast libration limit
ω  E1/2). Moreover, in all the cases considered here, we will show that the theory gives
〈U2

0〉 = 〈PU2
0〉 + 〈HU2

0〉 as an azimuthal flow, which provides the leading-order azimuthal
component of 〈V̄ 〉φ . We will thus compare the values of 〈V̄ 〉φ obtained from DNS with

the theoretical values of 〈U2
0〉.

3. Asymptotic analysis

In this section, we aim at calculating the steady axisymmetric component 〈U2
0〉 of the

interior flow U2
0, which requires the full mathematical expressions of U1

0 , u1
0 and 〈u2

0〉.
To solve the corresponding equations, we employ the spheroidal orthogonal coordinates
(q1, q2, φ), associated with the orthogonal normal unit basis (q̂1, q̂2, φ̂) where φ̂ is the
usual azimuthal unit vector. We introduce the change of variables

xR = aT(q1) sin q2 cos φ, yR = aT(q1) sin q2 sin φ, zR = aT ′
(q1)

cos q2, (3.1a–c)

where (q1, q2, φ) are spheroidal coordinates, a = |1 − (rpol/req)
2|1/2 = (T(q1)

2 +
T ′

(q1)
2
)1/2 is the distance between the centre and the foci of the ellipse. For later use,

we also define the cylindrical radius s = (x2
R + y2

R)1/2 = aT(q1) sin q2 and the scale factors
(h1, h2, hφ) for the coordinates (q1, q2, φ) as

h1 = h2 = a
√
T ′

(q1)
2 + (T(q1)

2 − T ′
(q1)

2
) cos2 q2 = ah̃, hφ = aT(q1) sin q2, (3.2a,b)

which gives h̃ =
√

sinh2 q1 + cos2 q2 and h̃ =
√

cosh2 q1 − cos2 q2 for oblate and prolate
spheroidal coordinates, respectively. Note that we recover the usual spherical case with
q1 → ∞, giving for instance ah̃ → a exp(q1)/2 ≈ r or aT(q1) → r, with the spherical
radius r (see e.g. Schmitt & Jault 2004). This definition of the spheroidal coordinates
allows us to encompass both oblate and prolate spheroidal coordinates in a single
framework, by using respectively T(q1) = cosh q1 when req > rpol, and T(q1) = sinh q1
otherwise. Here, we note T ′ the derivative of T with respect to q1. In spheroidal
coordinates, the semi-axes req and rpol are given by req = aT(Q1) and rpol = aT ′

(Q1)
, where

Q1 is the value of the radial-like coordinate q1 at the boundary. In appendix B.1, we give
various useful expressions related to the spheroidal coordinates used in this work.

3.1. First-order flows
Considering first the interior flow U1

0 = PU1
0 + HU1

0, the particular solutions PU1
0 are

usually sought as uniform-vorticity flows because of the spatial dependency of the
Poincaré term Ω̇1

c × r. For instance, such solutions for PU1
0 in ellipsoids have been

successfully obtained for latitudinal libration (Vantieghem et al. 2015), precession (e.g.
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Mean zonal flows in rotating spheroids

Noir & Cébron 2013), and if we consider longitudinal librations in the mantle frame of
reference, a natural solution is PU1

0 = −ε cos(ωt)ẑR × r. For the sake of our asymptotic
analysis, we consider below a generic uniform-vorticity flow PU1

0 (see (B2) and B3 in
appendix B.2), which encompasses all the various cases. Naturally, PU1

0 = 0 in absence
of non-homogeneous forcing terms, as this is for instance the case in the mean rotating
frame for longitudinal librations in the spheroid or latitudinal librations in the sphere.

Considering now HU1
0, the governing equations are

(∂t + Ω0∂φ)HU1
0 + 2Ω0

s ẑR × HU1
0 = −∇P1

0, ∇ · (HU1
0) = 0, (3.3a,b)

which has to be integrated together with the BC u1
0 + U1

0 = V 1
Σ on Σ . We assume in

the mean flow computation below that the spin-up time scale E−1/2 of the fluid is much
longer than the characteristic time scale of the mechanical forcing (in the fluid rotating
frame), which implies HU1

0 → 0 (as in Busse 2010; Sauret & Le Dizès 2013). In appendix
B.3, we investigate the validity of this assumption, that is how this limit is approached
when ω/E1/2 is increased (for the particular case of longitudinal librations). Note also that
assuming HU1

0 = 0, as in the following, is not valid when bulk flows are generated by
the forcing at this order. Considering for instance longitudinal librations (as in Aldridge
& Toomre 1969), we detail in appendix B.4 how the excitation of an inertial mode flow
HU1

0 /= 0 can indeed modify the mean zonal flow.
Then, since U1

0 = PU1
0 is known, we can solve (2.15a,b) to obtain u1

0. The computations
of the first-order boundary-layer flow are detailed in appendix B.5, but here we only
outline the essential steps. The pressure term in (2.15a) is usually removed by multiplying
the equation by n̂ × (. . . ) and −in̂ × (n̂ × . . . ), which gives L(n̂ × u1

0 + iu1
0) = 0, with

the imaginary number i. While the no-penetration condition u1
0 · n̂ = 0 gives directly the

first component of u1
0 as u1

0 · q̂1 = 0, the two other components Y = (u1
0 · q̂2, u1

0 · φ̂) can
then be obtained by integrating this equation. Given the spatio-temporal periodicity of
the perturbation, Y is sought as the linear combination Y = ∑

k Y k, where the individual
terms Y k are in the form exp[i(mkφ + ωkt)] to encompass the various sign possibilities.
Equation (2.15a) then reduces to

∂2
ζ ζ Y k = MY k, (3.4)

where the anti-symmetric matrix M reads (noting γk = (ωk + mkΩ0)/2)

M =
(

2iγk −2γ1
2γ1 2iγk

)
(3.5)

γ1 = Ω0
s ẑR · q̂1 = (Ω0 + Ωc) · n̂ = h̃−1Ω0

s T(q1) cos q2, (3.6)

where the spherical geometry is recovered for q1 → ∞, with T(q1)/h̃ → 1.
As detailed in appendix B.5, the linear system (3.4) can be solved together with

the no-slip BC to obtain u1
0. The resulting mathematical expression shows that the

boundary-layer thickness is singular when γ1 ± γ± = 0, that is

ẑR · q̂1 = ± γ±
Ω0

s
= ±mΩ0 ± ω

2Ω0
s

, (3.7)

with γ± = (mΩ0 ± ω)/2. The presence of these singularities shows that BLT is not valid
at this order of approximation, and their description requires the introduction of new
scalings near these so-called critical latitudes (e.g. Kida 2020). The calculations performed
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in this work are thus strictly valid when |ω ± m| > 2|Ω0
s |, to prevent the generation of

internal shear layers (and the excitation of inertial waves or modes, e.g. Aldridge & Toomre
1969; Sauret et al. 2013).

3.2. Weakly nonlinear analysis: second-order bulk flows
Using the decomposition U2

0 = PU2
0 + HU2

0, the average of (2.18) gives

2Ω0
s ẑR × 〈HU2

0〉 = −∇〈HP2
0〉, ∇ · 〈HU2

0〉 = 0, (3.8a,b)

together with BC (2.19b). Note that HU2
0 is related to viscous effects, and thus, contrary

to PU2
0, it vanishes when E = 0 (but is non-zero for E � 1). Equation (3.8a) admits a

solution of the form (e.g. Busse 1968b)

〈HU2
0〉 = sf (s)φ̂, (3.9)

where the rotation rate f (s) of the mean zonal flow has to be determined. Considering
now PU2

0, the inhomogeneous forcing term in (2.18) is linear in the Cartesian coordinates
[x, y, z], such that we can seek PU2

0 as a uniform-vorticity flow. For all the forcings
considered in this work, the time average of 〈PU2

0〉 can be written as sgφ̂, such that the
mean zonal flow reduces to

〈U2
0〉 = s[ f (s) + g]φ̂, (3.10)

where g is a constant, found to be g = 0 in all cases studied here.
At the order ε2E1/2, the mean zonal component of the bulk flow U2

1 is governed by

(ẑR · ∇)〈U2
1〉 = 0, (3.11)

which is actually the Taylor–Proudman theorem (Greenspan 1968). It implies that the flux
ejected out of the boundary layer through the interior (which is symmetric with respect to
the axis and anti-symmetric with respect to the equatorial plane) vanishes at every distance
from the axis, such that n̂ · u2

1|ζ=0 = 0 at the order ε2E1/2. Moreover, the continuity
equation at order ε2E0 reads

∂ζ (u2
1 · n̂) = n̂ · ∇ × (n̂ × u2

0). (3.12)

Finally, integrating equation (3.12) between ζ = 0 and ζ → +∞ yields (e.g. Busse 2010)

n̂ · u2
1|ζ=0 = −n̂ · ∇ ×

∫ +∞

0
n̂ × u2

0 dζ = 0, (3.13)

which is used to determine the unknown function f (s).

3.3. Weakly nonlinear analysis: second-order boundary-layer flows
To obtain 〈ū2

0〉, we separate (2.19a) in three distinct problems by considering three distinct

velocity fields uA, uB and uC such that 〈u2
0〉 = uA + uB + uC. In the first problem, we seek
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Mean zonal flows in rotating spheroids

a velocity field uA satisfying the homogeneous equations and the inhomogeneous BC, that
is

HuA + n̂∂ζΦ
2
1 = 0, uA + 〈U2

0〉 = 0 on Σ, (3.14a,b)

where we have defined the linear operator Hu2
0 = 〈Lu2

0〉, using the operator L defined
below (2.15a,b). Then, we seek the velocity fields uB and uC that satisfy the homogeneous
BC uB = uC = 0 at ζ = 0 and the inhomogenous equations given by

HuB + n̂∂ζΦ
2
1 = 〈(u1

0 · ∇)u1
0 + 2Ω1

c × u1
0 + (U1

0 · ∇)u1
0 + (u1

0 · ∇)U1
0〉, (3.15)

HuC + n̂∂ζΦ
2
1 = 〈−(u1

1 + U1
1) · n̂∂ζ u1

0〉. (3.16)

For tidal forcing, Suess (1971) claimed erroneously that the term (u1
1 + U1

1) · n̂∂ζ u1
0

vanishes in (3.16), such that the contribution of uC could be discarded. This would be
correct if the normal velocity were zero at all orders, but this term only vanishes at the
boundary and not everywhere in the boundary layer. We will instead demonstrate that a
non-zero uC is required to balance the singularity of uB on the rotation axis.

The equations governing uA are formally similar to boundary-layer equations. Similarly,
we obtain in the spheroidal coordinates (noting λ = [1 + i sgn(γ1)]

√|γ1|)

uA = − s
2

f (s)

⎛⎝ 0
i(e−λζ − e−λ∗ζ )

e−λζ + e−λ∗ζ

⎞⎠ . (3.17)

The calculation of uB is more tedious. After some algebra, (3.15) reduces to the
following scalar equation

(∂2
ζ ζ − λ2)F0 = E, (3.18)

where

E = 〈(u1
0 · ∇)u1

0 + 2Ω1
c × u1

0 + (U1
0 · ∇)u1

0 + (u1
0 · ∇)U1

0〉 · (q̂2 + iφ̂), (3.19)

with F0 = uB · (q̂2 + iφ̂) and λ2 = 2 iγ1. To calculate E , we first consider each
term separately, that is (u1

0 · ∇)u1
0, 2Ω1

c × u1
0, (U1

0 · ∇)u1
0 and (u1

0 · ∇)U1
0. Then, we

decompose each term as a constant term, which contributes to the mean zonal average,
and terms proportional to exp(±2iωt), exp(±2imφ) and exp(±2i(mφ ± ωt)) that only
contribute to the average if m = 0 or ω = 0.

Considering each term of E separately, the problem is made simpler by making the ζ

dependency explicit, that is by rewriting the equation as

(∂2
ζ ζ − λ2)F0 =

∑
k

(κk + ϑkζ ) e−ςkζ , (3.20)

where the complex coefficients (κk, ϑk) and ςk (which is a linear combination of λ±, κ±
and their complex conjugates, see (B29)) are independent of ζ . We can then integrate
equation (3.20) by considering each term of the sum separately, which gives

F0 =
∑

k

e−ςkζ [(ς2
k − λ2)(κk + ϑkζ ) + 2ϑkςk] − e−λζ [(ς2

k − λ2)κk + 2ϑkςk]

(ς2
k − λ2)2

, (3.21)

and then uB can be obtained using uB · q̂2 = �e(F0) and uB · φ̂ = �m(F0).
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D. Cébron et al.

Similarly, the calculation of uC can be reduced to the integration of

(∂2
ζ ζ − λ2)H0 = F , (3.22)

with H0 = uC · (q̂2 + iφ̂) and where the right-hand side is given by

F = −〈(u1
1 + U1

1) · n̂∂ζ [u1
0 · (q̂2 + iφ̂)]〉. (3.23)

The calculation of F requires the expression of (u1
1 + U1

1) · n̂. The Ekman pumping u1
1 · n̂

is obtained using the continuity equation

− ∂ζ (u1
1 · n̂) + n̂ · ∇ × (n̂ × u1

0) = 0. (3.24)

Using the expression of u1
0, we then obtain u1

1 · n̂ by integration. Together with the Ekman
pumping u1

1, an Ekman (bulk) circulation U1
1 is generated via the no-penetration of the

fluid at the boundary, such that (u1
1 + U1

1) · n̂ = 0 at ζ = 0. We thus obtain U1
1 · n̂ =

−u1
1 · n̂|ζ=0. Using a similar procedure for uB, we can now calculate the analytical

expression of F by considering the terms contributing to the average, in particular when
ω = 0 or m = 0. We obtain similarly H0, and thus uC, by summing all the solutions.

3.4. Mean axisymmetric zonal flow
Having explicitly obtained uB and uC in § 3.3, we now use (3.13),

n̂ · ∇ ×
∫ +∞

0
n̂ × (uA + uB + uC) dζ = 0, (3.25)

to obtain the unknown rotation rate f (s) present in uA. Therefore, using the expression of
uA given by (3.17), we obtain

∂

∂q2

(
−sgn(γ1)aT(q1) sin2 q2

2
√|γ1|

f (s) +
∫ +∞

0
sin q2[�e(F0) + �e(H0)] dζ

)
= 0, (3.26)

which gives

f (s) = 2
√|γ1|

sgn(γ1)aT(q1) sin q2
�e

(∫ ∞

0
[F0 + H0] dζ

)
, (3.27)

where the integration constant has to be taken equal to 0 to avoid the divergence of the
zonal flow when s → 0. From a practical point of view, one can notice that the primitive
function G of F0 + H0 tends to 0 for ζ → ∞ in order to ensure a zero flux at ζ = ∞, such
that (3.27) simplifies into

f (s) = − 2
√|γ1|

sgn(γ1)s
�e(G(ζ=0)), (3.28)

which gives the axisymmetric mean zonal flow through (3.10).

4. Results

In the DNS, we find that the geostrophic flows are produced in an O(E−1/2) interval of
time, where E−1/2 is the spin-up time scale (Greenspan 1968). Therefore, for the sake
of numerical convergence, we have first integrated the nonlinear equations during a few
spin-up times, and then time averaged the flows over a few tens of forcing periods 2π/ω

to extract the mean geostrophic component from the three-dimensional velocity field.
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(a) (b)

Figure 4. Rotation rate of the mean zonal flow, as a function of the cylindrical radius s, in rotating spheres
subject to weak longitudinal librations (with Ω0 = 0, m = 0). (a) Our analytical results (solid coloured curves)
are compared with the theoretical results (black dashed curves) of Sauret & Le Dizès (2013). (b). Comparison
between the theory (black dashed curves) and DNS (solid coloured curves) at E = 10−7 and ε = 10−4.

4.1. Longitudinal librations
We consider weak longitudinal librations in the mean rotating frame with Ωc = ẑR, U = 0
and V Σ = ε cos(ωt)ẑR × r. In this reference frame, the zonal flow has first been studied
theoretically in the sphere by Busse (2010) in the limit of vanishing libration frequency
ω → 0. Using a mathematical description in terms of a streamfunction, Sauret & Le Dizès
(2013) extended the spherical theory to spherical shells and with an arbitrary libration
frequency (but still neglecting the shear layers). To avoid the presence of critical shear
layers, we only present here results for libration frequencies |ω| ≥ 2, The shear layers
indeed excite inertial waves occurring when |ω| < 2, as obtained from (3.7), and modify
the zonal flow (Sauret et al. 2012, in the cylindrical geometry). We obtain an excellent
quantitative agreement with the results of Sauret & Le Dizès (2013) in a full sphere, as
shown in figure 4(a), which validates our analytical theory. We naturally obtain the same
results when calculating the theory in the mantle frame, in which the three last terms of
(2.19a) are now non-zero (their contributions to f balance each other).

Since our theoretical approach closely follows that of Busse (2010), we aim at comparing
our results with Busse’s theoretical zonal flow, which surprisingly differs from the one
obtained by Sauret & Le Dizès (2013) for the full sphere librating at ω → 0. Indeed, Busse
(2010) and Sauret & Le Dizès (2013) obtained respectively in this regime

f (s) = 51.8s2 − 72
480(1 − s2)

and f (s) = 59s2 − 72
480(1 − s2)

, (4.1a,b)

which were illustrated in figure 1(a). The two profiles are indistinguishable near the
rotation axis, and are actually in overall good agreement with the experimental and
numerical results of Sauret et al. (2010) for small but finite values of ω � 1 Nevertheless,
as already noticed by Sauret & Le Dizès (2013), the two expressions differ significantly
when s > 0.7. The latter authors attributed this difference to their assumption ε � ω � 1,
supposedly different from the assumption ω � ε of Busse (2010). Our asymptotic theory
actually follows closely Busse (2010) but, as shown for ω = 0.1 in figure 4(a), our results
are in exact agreement with the zonal flow profile of Sauret & Le Dizès (2013). We have
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Figure 5. Rotation rate of the mean zonal flow, as a function of the cylindrical radius s, in rotating spheroids
subject to longitudinal librations with ω = π. (a) Comparison between DNS with E = 10−5 and ε = 5 × 10−4

(solid coloured curves) and theory (dashed black curves). Numerical profiles have been truncated for s ≤ 0.05,
because there are not enough grid points near the centre to get reliable numerical averages with formula (2.8) for
the rotation rate. (b) Comparison of the theoretical rotation rate between the sphere, oblate spheroids (rpol/req =
0.2) and prolate spheroids (rpol/req = 10). Horizontal dashed blue curve indicates the theoretical profile for the
cylinder (Wang 1970; Sauret et al. 2012).

thus investigated the origin of this intriguing discrepancy by replicating step by step the
calculations of Busse (2010). We found that his equations are correct, contrary to his
integration of the weakly nonlinear inhomogeneous equations, i.e. equations (A5)–(A7)
are erroneous. Performing the calculations of Busse (2010) with a computer algebra
system gives indeed (4.1b) in the relevant limit ω → 0. To further assess the validity
of the asymptotic theory, we have also performed DNS with XSHELLS in the same
frame of reference, rotating at Ωc = ẑR. Considering extremely small viscosity and
forcing amplitude (i.e. E = 10−7, ε = 10−4), the numerical flows agree very well with the
theoretical predictions (figure 4b). This clearly confirms the agreement already obtained
by Sauret & Le Dizès (2013) at more moderate parameters. For ω = 2, note the small
discrepancy at s = 0, due to the presence of the critical latitude.

Finally, we investigate how the zonal flows are modified in spheroids. Rapidly rotating
planetary bodies are indeed deformed into ellipsoids due to centrifugal deformations, and
several laboratory experiments have been designed such as the ZoRo experiment (Su et al.
2020; Vidal, Su & Cébron 2020) with rpol/req = 0.95. We perform DNS with NEK5000
in the mantle frame of reference (where the boundary velocity is zero), and present the
mean zonal flows obtained from spheroidal DNS at E = 10−5 for various values of the
ratio rpol/req in figure 5(a). We also compare the results to the theoretical profiles that have
been obtained in spheroidal coordinates. Overall, we find a good quantitative agreement,
even if the DNS have not been performed in the regime E � 1. The numerical results
convincingly validate our asymptotic theory of libration-driven zonal flows in spheroids.
It is worth noting that significant departure from the spherical profile is found, even for
moderate spheroidal deformations rpol/req ≤ 1 as often considered experimentally (e.g.
0.7 in Grannan et al. 2017). The theory also allows us to explore more extreme spheroidal
configurations that cannot be simulated numerically, as illustrated in figure 5(b). Two
points are worthy of comment. We find that the mean zonal flow reaches a constant value at
s = 0. The latter value actually corresponds to the constant profile obtained in the cylinder
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Mean zonal flows in rotating spheroids

(Wang 1970; Sauret et al. 2012), which gives a lower bound for f . In the interior 0 < s < 1,
f tends again to the cylindrical value in the disc limit, that is rpol/req → 0, whereas it
vanishes in the infinite cylinder limit rpol/req → ∞. Moreover, our results illustrate that
the cylindrical geometry cannot be faithfully used as a reduced model of the spheroid.
Therefore, results obtained in a cylindrical geometry should be interpreted with caution
for planetary applications.

4.2. Latitudinal librations
We now consider the flows driven by latitudinal librations, which have only received
scant attention so far (Chan, Liao & Zhang 2011; Zhang, Chan & Liao 2012; Vantieghem
et al. 2015). In particular, the mean zonal flows have only been computed numerically at
moderate values of E (Chan et al. 2011), and never compared to theoretical predictions.
Temporal and spatial perturbations must be indeed considered simultaneously, respectively
at the frequency ω and at the azimuthal wavenumber m = 1. This approach contrasts
with previous theoretical studies of zonal flows, where only one kind of perturbations
was considered, and fully justifies the generic theoretical framework presented in § 3.

We consider for simplicity the spherical geometry, and we perform our analytical
and numerical calculations in the mean rotating frame with Ωc = ẑR = ẑI , V Σ =
ε cos(ωt)x̂R × r and U = 0. Using our asymptotic approach, we uncover the theoretical
zonal flow associated with this forcing in the relevant limit of vanishing viscosity. We
compare the associated theoretical profiles with DNS in figure 6(a). We obtain an excellent
agreement for the three different libration frequencies and for very small perturbation and
viscosity (E = 10−7, ε = 10−4) in the regime ω ≥ 2 (i.e. without critical latitudes). Note
that the rotation rate is always regular at s = 0 in the DNS (as mathematically expected
from Lewis & Bellan 1990, see also appendix A), but our theoretical profile diverges at
s = 0 for ω = 2. Indeed, the mathematical singularity associated with the critical latitude
is located on the rotation axis for ω = 2 (see (3.7)). This mathematical singularity is
smoothed out by viscosity in the DNS but, to regularise our asymptotic theory and obtain
a regular rotation rate profile everywhere in space, additional viscous effects (e.g. Kida
2011) should be taken into account at the critical latitudes. Finally, we can explore with
the theory how the rotation rate evolves with the libration frequency. Similarly to figure 4
for longitudinal librations, we illustrate in figure 6(b) the theoretical zonal flows for various
libration frequencies in the particular regime ω < 2 (where the theory may not be valid,
which will be further discussed in § 5). Even if higher-order viscous effects are expected
to smooth out the singularity, one can already notice that, at this order, the width of the
divergence seems to increase as ω → 2. The influence of the critical latitudes on the zonal
flows is further discussed below.

4.3. Precession-driven zonal flows
In his seminal work, Busse (1968b) considered a precessing sphere and found that the
first-order bulk flow is a solid-body rotation ωf × r, tilted from the boundary rotation
vector Ω0ẑR. Having shown that ε2 = (Ω0ẑR − ωf )

2 = Ω2
0 − ω2

f , he showed that the
component of Ωc normal to ωf is of the order εE1/2, which can thus be neglected at
the order of the mean zonal flow calculation. To calculate the mean zonal flow, he then
neglected Ωc · ωf with respect to ω2

f = |ωf |2 for simplicity, yielding finally Ωc = 0 (his
mean zonal flow results are thus obtained in the inertial frame of reference). However,
only a crude agreement has been found experimentally (Malkus 1968) and numerically
(Noir et al. 2001b) with his theoretical zonal flow (see figure 1). To carefully compare
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Figure 6. Rotation rate of the mean zonal flow, as a function of the cylindrical radius s, for a rotating sphere
subject to weak latitudinal librations. (a) Comparison between theory (black dashed curves) and DNS (coloured
solid curves) at E = 10−7 and ε = 10−4 in the regime ω ≥ 2. (b) Theoretical zonal flows when ω < 2 with
divergent flows at the critical latitudes.

theory and numerics, we have performed DNS in spheres to explore smaller values of E
than in ellipsoids, and also to consider very small precession angles. Moreover, we have
taken Ωc · ωf into account in our theoretical calculations (contrary to Busse 1968b).

While DNS are performed in the precessing frame described in § 2.2, it is more
convenient for theoretical calculations to consider the reference frame where the z-axis
is along ωf . Then, the boundary velocity can be written as V Σ = Ω0ẑR × r + εx̂R × r,
with Ω0 = (1 + Po)

−1. Since only the component of Ωc parallel to ωf is important at this
order, (2.7) can be simplified to obtain Ωc � Ω0Po cos(α)ẑR. without loss of generality.
We show in figure 7(a) that the results of Busse (1968b) are recovered in the limit Po = 0
(where the frame of reference reduces to the inertial frame). We also show the mean flow
for small Po /= 0 (i.e. when Ωc · ωf is taken into account). Considering Po /= 0 could be
relevant for DNS performed at moderate values of Po and α, but the mean flow is expected
to be only marginally modified in the planetary regime Po � 1.

We have next performed DNS at low values of E to validate the asymptotic theory of
Busse (1968b), since previous studies have failed to recover the theoretical mean zonal
flows (see figure 1 above). The simulations have been computed in the precession frame,
where the rotation vector ωf of the basic flow is accurately given by (Cébron et al. 2019)

ωf · x̂R = 1
1 + Po

[λi + γ cos(α)]γ sin(α)

γ [γ + 2λi cos(α)] + |λ|2 , (4.2a)

ωf · ŷR = − 1
1 + Po

γ λr sin(α)

γ [γ + 2λi cos(α)] + |λ|2 , (4.2b)

ωf · ẑR = 1
1 + Po

γ [γ cos2(α) + 2λi cos(α)] + |λ|2
γ [γ + 2λi cos(α)] + |λ|2 , (4.2c)

with γ = Po/E1/2 and where λ = λr + iλi is the spin-over damping factor given by
Hollerbach & Kerswell (1995), Noir et al. (2001b)

λr ≈ −2.62 − 1.36E0.27, λi ≈ 0.258 + 1.25E0.21. (4.3a,b)
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Figure 7. Rotation rate of the mean zonal flow, as a function of the cylindrical radius s, for a precessing
sphere. (a) Comparison of theoretical profiles between our theory and Busse’s predictions (black squares,
extracted from figure 1 in Busse 1968b). (b) Comparison between our theory (black dashed curve) and DNS
(solid curves) for different values of Po with γ = Po/E1/2.

To compare the simulations with the theory, which assumes that ωf is along ẑI at leading
order (Busse 1968b), we post-process the data as follows. We introduce a new reference
frame, called the fluid frame, where the new z−axis is along the axis of rotation given
by (4.2). Then, we rotate the velocity field into that frame and, to isolate the mean zonal
component of order ε2 from the leading-order steady uniform-vorticity flow given in (4.2),
we compute the rotation rate of the mean zonal flow as

f (s) = Vφ(z = 0) − ωf s
ε2s

, (4.4)

where Vφ(z = 0) is the azimuthal velocity in the equatorial plane z = 0 of the fluid frame
of reference considered in this section, ωf = ‖ωf ‖ is the norm of the fluid rotation vector
ωf given by (4.2), ε2 = Ω2

0 − ω2
f , and s is the cylindrical radius measured from the fluid

rotation axis. A typical DNS is illustrated in figure 7(b). We observe that the axial value
f (0) is generally non-zero in the DNS, which agrees with previous findings of Noir et al.
(2001b), but the numerical profile is in good agreement with the theory far from the
axis (when 0.3 ≤ s ≤ 0.7). We now investigate how these axial values f (0) vary with the
control parameters, and the oscillations of f are discussed further in § 5.

Our DNS show that the axial value f (0) depends linearly on γ , as illustrated in
figure 8(a). However, note that the azimuthal velocity sf (s) always vanishes at s = 0.
Thus, the value f (0) only governs the weak slope of the velocity at s = 0, which can
vary in the DNS. In the following, for every E, we have varied Po to obtain the value of
γ which cancels out f (0). The corresponding DNS are shown in figure 8(b). Similarly to
figure 7(b), the numerical profiles are in good agreement with the theory for E ≤ 10−6 for
0.3 ≤ s ≤ 0.7. Near the critical latitude located at s = √

3/2 � 0.866, the mathematical
singularity is smoothed out by viscous effects. However, the lower the viscosity, the better
the agreement with the theory on both sides of the singularity, with the mean zonal flow
converging towards the theory when E is reduced (see figure 8b).

4.4. Revisiting the tidal-like forcing of Suess (1971)
We finally consider the tidal-like forcing, first considered analytically by Suess (1971),
assuming ω = 0 and m = 2 in boundary flow (2.4) together with Ωc = 0. Suess (1971)
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f

Figure 8. Mean zonal flows driven by precession in spheres. (a) Value at s = 0 of f , as a function of γ =
Po/E1/2 in DNS (symbols). Dashed blue line shows a slope −0.15. (b) Rotation rate of the mean zonal flow,
as a function of the cylindrical radius s. Comparison between theory (black dashed curve) and DNS (solid
coloured curves) choosing values of γ such that f (0) = 0.

investigated theoretically and experimentally the mean zonal flow generated by this
forcing. Suess (1971) predicted theoretically the generation of a strong retrograde vortex
along the rotation axis, and his prediction was surprisingly in broad agreement with his
experimental results as reproduced in figure 9(a). However, the experimental profile cannot
be singular at s = 0 (see appendix A), and the reported broad agreement with theory has
thus to be erroneous. Actually, a thorough analysis reveals that even his theory is incorrect
because (i) he erroneously discarded the contribution from uC and, (ii) because he made
some errors in his calculation (e.g. his (42) is incorrect). A possible singularity at s = 0
may actually be expected from the divergence of the first-order boundary-layer solution u1

0
at s = 0, and figure 9(b) shows that the contributions of uB and uC are indeed singular at
s = 0. Nevertheless, figure 9(b) clearly shows that the total zonal flow, given by the sum of
the contributions, is smooth because they exactly balance each other on the axis at s = 0.
This confirms the crucial role of the flow uC, which was discarded by Suess (1971).

We have drawn the correct theoretical solution in figure 9(a), clearly showing that
it does not agree with the experimental measurements (especially at s = 0). One may
wonder whether the observed strong retrograde flow near the axis of rotation is reminiscent
of the non-zero values of f (0) reported above for precession and libration at ω ≤ 2.
However, since the axial value sf (0) of the azimuthal velocity does not seem to vanish
(contrary to the corresponding value for precessing flows), this flow may have a different
origin. Indeed, the experimental results might instead exhibit the saturation of an elliptical
instability in the bulk of the fluid, which is not taken into account in the theory (as it was
not known at this time, see the review in Kerswell 2002). The elliptical instability can
be excited when the streamline ellipticity β is large compared to the viscous dissipation
(with β = 2ε in Suess 1971). More quantitatively, the growth rate σ of the elliptical
instability can be estimated as σ = 9β/16 − KE1/2, with the typical values 1 ≤ K ≤ 10
related to viscous dissipation in the Ekman boundary layer (e.g. Cébron et al. 2012).
Since the experimental results of Suess (1971) shown in figure 9(a) have been obtained for
E1/2 = 5.3 × 10−3 and β = 2.5 × 10−2, the expected growth rate is −0.04 ≤ σ ≤ 10−2.
Thus, an elliptical instability might have been excited in the experiment, which would
certainly modify the observed zonal flow (see e.g. figure 5 in Grannan et al. (2017),
obtained for Ωc = −1).
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Figure 9. Rotation rate of the mean zonal flows driven by the tidal-like forcing of Suess (1971), obtained with
Ωc = ω = 0 and m = 2 in expression (2.4). (a) Thick solid red curve: present theory. Solid orange curve:
experimental results of Suess (1971). Dashed blue curve: erroneous theory of Suess (1971). Inset shows the
azimuthal velocity sf . (b) Various contributions to f (solid red curve), made of the sum of two contributions:
the one due to uB (dotted curve), which was mistakenly considered to be f by Suess (1971), and the one due to
uC (dashed curve).

5. Discussion

5.1. Mean zonal flows when ω ≤ 2
We have so far successfully validated the theoretical mean zonal flows driven by
librations when ω > 2, that is in the absence of inertial waves and critical latitudes.
A successful validation was, however, less straightforward to obtain for the precession
forcing. Precession-driven flows are indeed strongly affected by the presence of inertial
waves and conical shear layers spawned from the critical latitudes (Noir et al. 2001a).
However, we have still found an overall good quantitative agreement with the analytical
model, even if the latter has been obtained by neglecting these two additional effects.
By analogy, more complicated flow structures are also expected for libration-driven flows
when ω ≤ 2, as previously reported in cylinders (Sauret et al. 2012) and spheres (Lin &
Noir 2020). Critical latitudes indeed also exist for libration-driven flows when ω ≤ 2 but,
based on our findings for precession, one may still expect a rather good agreement between
the analytical libration-driven mean zonal flows and DNS.

We illustrate in figure 10 the mean zonal flows in rotating spheres subject to latitudinal
librations in panel (a) and longitudinal librations in panel (b). Outside the region affected
by the critical latitudes, the rotation rate f exhibits oscillations in the bulk, which are
very similar to the ones reported for precession in § 4.3, that are superimposed onto the
theoretical profile. In particular, the fluid rotation rate at the axis f (0) can be quite different
than the theoretical profile. Because the finite difference method loses some accuracy at
r = 0 (see appendix A), we have carefully checked numerical convergence at E = 10−7 by
refining the grid (especially at the centre) and also by increasing the maximum spherical
harmonic degree up to lmax = 339 (and up to lmax = 425 at E = 10−8). The variations are
within the thickness of the curve.

In the case of the latitudinal librations shown in figure 10(a), the same stationary
oscillations are also present when only |m| ≤ 1 are considered in the DNS. Careful
inspection of the instantaneous flow reveals that forced inertial modes (equatorially
anti-symmetric m = ±1 for latitudinal librations, and equatorially symmetric m = 0 for
longitudinal librations) are present, which have a number of radial zeros. We conjecture
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Figure 10. Geostrophic velocity sf (or angular velocity f in the insets) of the mean zonal flow, as a function of
the cylindrical radius s, for a sphere subject to (a) latitudinal librations at ω = 0.1 and (b) longitudinal librations
for two ω. Comparison between theory (black dashed curves) and DNS (solid coloured curves) at ε = 10−4.
The curve at E = 10−7 is indistinguishable from the one obtained with ε = 10−5 (not shown). In (b), DNS
have been performed at E = 10−7, and we have checked that the numerical profile f at ω = 1 is unchanged for
ε = 10−3 and ε = 10−6 (not shown). Insets show that f (0) remains finite in DNS.
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Figure 11. Mean zonal flows in rotating spheroids subject to longitudinal librations in the presence of critical
latitudes (ω = π/2 ≤ 2). (a) Comparison of the mean zonal velocity sf (s) given by the theory (black dotted
curve for the sphere, black dashed curve for rpol/req = 0.8) and DNS (coloured solid curves) at E = 10−5 and
ε = 10−4. (b) Comparison of the theoretical rotation rate between the sphere, an oblate (rpol/req = 0.2) and
prolate (rpol/req = 4) spheroid.

that these modes have almost the same frequency as the excitation (here ω � 0.1) and
produce the multiple jets by nonlinear interaction, which carry the signature of inertial
modes. In addition, we have computed the same case at a lower viscosity (E = 10−8) also
shown in figure 10(a). It highlights that once viscosity is low enough for the oscillations
to appear, their amplitude is nearly independent of the Ekman number. Having changed ε

in figure 10, we obtain that the amplitude of such oscillations does not depend on ε when
ε � 1. The zonal jet velocities scale thus as ε2E0, exactly as the theoretical mean zonal
flow. Such scaling law is consistent with a zonal flow associated with a libration-excited
mode, which has an amplitude of the order of εE0 (see appendix B.4). The precise
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mechanism is beyond the scope of this paper, but it is worth noting that Lin & Noir (2020)
also observed an imprint of the excited inertial mode on the mean zonal flow in shells.
Despite the presence of these jets, our asymptotic theory fairly reproduces the mean zonal
flows found in the DNS (see appendix B.4 for further details).

The same conclusion is drawn in spheroids, as reported in figure 11(a), even if the DNS
in spheroidal geometries have been performed for moderate values of E ≥ 10−5 (compared
to DNS in spheres with E ≥ 10−7). Another striking point in the figure is that the location
of the critical latitude varies with the ellipsoidal deformation. Indeed, the unit vector e1
on the left-hand side of (3.7) depends on the spheroidal geometry, such that the spatial
position of the critical latitude is modified. This phenomenon is further illustrated with
more deformed spheroidal geometries in figure 11(b). This effect has direct consequences
for the numerical profiles obtained. Only a small part of the volume is affected by the shear
layer when the critical latitude is close to the boundary (see figure 11a for rpol/req = 0.8),
such that the oscillations are rather localised around the position of the critical latitude.
However, the oscillations can spread in the volume when the critical latitude is far from
the boundary (see rpol/req = 1 in figure 11a).

5.2. Geostrophic shear spawned from the critical latitudes when E � 1
The analytical solutions show that the mean zonal flows are singular at the cylindrical
radius sc when ω ≤ 2 (see e.g. figure 11b), Nevertheless, this singularity is regularised by
viscosity such that the mean zonal flow takes the form of a shear layer near sc, as first
noticed by Busse (1968b). Moreover, it is known that the amplitude of the geostrophic
shear increases as E is reduced, by contrast with the typical horizontal length scale of the
shear (e.g. Noir et al. 2001b, for precession). However, the corresponding scaling laws
with the Ekman number have been disputed, and no conclusive answer has been obtained
yet. We aim at revisiting here that problem numerically with DNS in spheres, to hopefully
capture the correct asymptotic behaviour in the relevant regime E � 1. Lin & Noir (2020)
recently explored the geostrophic shear generated by longitudinal librations with ω = 1
in spherical shells, but with a small inner core (s ≤ 0.1). We reproduce their results in
figure 12(a), and find that their mean zonal flows are in very good agreement with the
theoretical solution at ω = 1 in the full sphere. Considering now the width δs and the
peak-to-peak amplitude δug of the geostrophic shear (as defined in figure 12a), Lin & Noir
(2020) proposed the scaling laws

δug/ε
2 ∝ E−1/10, δs ∝ E1/5, (5.1a,b)

using DNS of longitudinal librations at ω = 1 and order-of-magnitude arguments. We
confirm numerically scaling laws (5.1a,b) for various libration-driven flows at different ω,
but only in a certain parameter range (see figure 12b).

One can indeed anticipate a possible change of regime when the geostrophic shear, of
typical thickness E1/5 (Kerswell 1995; Noir et al. 2001b) and centred on the cylindrical
radius sc (see inset in figure 12b), interacts with the equatorial boundary layer at s � 1.
Because the typical Ekman layer thickness E1/2 is negligible with respect to E1/5 when
E � 1, we expect a different behaviour for a certain value ω = ωc given by

sc + O(E1/5) � 1, (5.2)

with the cylindrical radius of the critical latitude sc = sin cos−1(ωc/2) ≈ 1 − ω2
c/8 for

small values of ωc in the sphere. Equation (5.2) gives ωc = O(E1/10) � 1 in the regime
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Figure 12. Geostrophic shear associated with the critical latitudes of longitudinal librations with ω ≤ 2. (a)
Comparison between theory and DNS (Lin & Noir 2020) in a spherical shell for libration-driven zonal flows
computed with ε = 10−2. The grey area indicates the tangential cylinder s ≤ 0.1 associated with the inner core
in Lin & Noir (2020). (b) Schematic regime diagram for the evolution of δug and δs, as a function of ω and
E. Pink area indicates the regime dominated by the scalings of the Ekman boundary layer. In the blue area the
dominant scalings are given by (5.1a,b). Inset illustrates the geostrophic shear centred on sc in a meridional
section, where the blue area represents the Ekman boundary layer of thickness E1/2.

E � 1 (see figure 12b). When ω � E1/10, we thus expect the Ekman layer scaling laws

δug/ε
2 ∝ E−1/2, δs ∝ E1/2. (5.3a,b)

In the opposite regime ω  E1/10, the relevant scaling laws should be (5.1a,b) as proposed
by Lin & Noir (2020). In order to validate these theoretical considerations, we have
performed DNS in both regimes at different libration frequencies, especially near the
transition between these two configurations (figure 12b). The numerical results, obtained
for various libration forcings and frequencies, are summarised in figure 13. The various
scaling laws are numerically recovered, as well as the change of regimes. Note that the
typical frequency of most planetary bodies subject to longitudinal librations is ω ≥ O(1)

(e.g. Noir et al. 2009; Sauret & Le Dizès 2013), such that scaling laws (5.1a,b) are expected
to be relevant for most planetary applications.

Finally, the aforementioned scaling laws differ from the ones that have been proposed
for precession-driven flows (Noir et al. 2001b), that is

δug/ε
2 ∝ E−3/10, δs ∝ E1/5. (5.4a,b)

We have checked that we recover scaling laws (5.4a,b) in our DNS of precession-driven
flows. Note that scaling law (5.4a) has also been experimentally observed in a rotating
sphere subject to a tidal deformation (Morize et al. 2010). As outlined in Lin & Noir
(2020), the origin of the different scaling laws between libration and precession remains
puzzling.

5.3. Influence of a solid inner core
Planetary fluid layers are often bounded by two solid layers (e.g. the Earth’s liquid core
is surrounded by the upper mantle and a solid inner core). One can thus wonder how
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Figure 13. Geostrophic shear associated with the critical latitudes of longitudinal librations (empty points)
and latitudinal librations (filled points) in a sphere. The symbols ω = 1 performed for longitudinal librations
have been extracted from figure 10 in Lin & Noir (2020). The black cross indicates our DNS of a full sphere at
ω = 1 and ε = 10−4, which agrees with Lin & Noir (2020). Distance δs between peaks in (a), and peak-to-peak
amplitude δug/ε

2 in (b), as a function of E.

our results, obtained in coreless geometries, could be modified by the presence of an inner
boundary. We focus here on libration-driven zonal flows, which have already received
attention (e.g. Calkins et al. 2010; Sauret & Le Dizès 2013; Lin & Noir 2020).

We first consider the case where the critical latitudes and inertial waves are absent. This
regime has been theoretically investigated for longitudinal librations in Sauret & Le Dizès
(2013), showing that the mean zonal flows in a spherical shell can be entirely deduced
from the solutions in the full sphere (if we exclude the Stewartson layers associated
with the presence of the inner boundary, see Stewartson 1966). Here, we consider a
(possibly non-homoeoidal) spheroidal shell, where the inner boundary is spheroidal, with,
respectively, the (dimensional) inner equatorial rin

eq = ηeqreq and polar rin
pol = ηpolrpol axes,

where [ηeq, ηpol] are the equatorial and polar shell aspect ratios (ηeq = ηpol in homoeoidal
shells). We impose on the inner boundary a harmonic tangential velocity of magnitude εin
and angular frequency ωin, which may differ from the forcing at the outer boundary (with
the amplitude ε and angular frequency ω as above). Following Sauret & Le Dizès (2013),
we find that the rotation rate of the mean zonal flow is given in dimensionless form by

〈V̄φ〉
s

=

⎧⎪⎨⎪⎩
ε2

in(1 − s2)1/4f icb
sp (s/rin

eq) + ε2[1 − (s/rin
eq)

2]1/4f cmb
sp (s)

(1 − s2)1/4 + [1 − (s/rin
eq)

2]1/4 for s < rin
eq,

ε2f cmb
sp for s > rin

eq,

(5.5)

where f icb
sp (respectively f cmb

sp ) is the rotation rate profile of the mean zonal flow in a coreless
geometry when the forcing at the inner (respectively outer) boundary is considered.
According to (5.5), the presence of an inner boundary at s = rin

eq is not expected to modify
the mean zonal flow for s > rin

eq (i.e. outside the tangent cylinder).
Note that Sauret & Le Dizès (2013) only considered the particular situation ωi = ω for

inner and outer boundaries subject to longitudinal librations, our expression (5.5) naturally
agrees with their formula (4.24) in this case. DNS in spherical shells are in excellent
agreement with formula (5.5) as shown in figure 14(a), even for latitudinal librations not
considered in Sauret & Le Dizès (2013). Note that the observed discontinuity at s = rin

eq
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Figure 14. Normalised mean zonal velocity 〈V̄φ〉/ε2 at various dimensionless heights z = √
1 − s2 in

homoeoidal shell geometries (with aspect ratios ηpol = ηeq = 0.5) for libration forcings. The DNS profiles
are computed at z = z0 for s ≤ ηeq, and at z0 = 0 for s > ηeq, giving a single profile for each DNS. Grey area
shows the tangent cylinder s ≤ ηeq. Forcings with ωin = ω and εin = ε on the no-slip inner boundary, which
is subject to the same forcing as the outer boundary (except for the stress-free case, labelled SF). Black dashed
curves indicate the theoretical profiles in the shell geometry. (a) Spherical shell (rpol/req = 1) with a no-slip
(cyan and orange solid curves) or a stress-free (red and pink solid curves) inner boundary. Blued dotted dashed
curves illustrate the full-sphere analytical profiles. DNS performed at E = 10−6, ω = 3 and ε = 10−6 for the
two forcings. (b) Homoeoidal (i.e. ηpol = ηeq) spheroidal shells (rpol/req /= 1) subject to longitudinal librations
(solid coloured curves). DNS performed at E = 2.5 × 10−6, ω = π and ε = 5 × 10−4.

is related to the presence of the Stewartson layers due to the velocity mismatch between
the zonal bulk flow and the inner boundary (these layers are absent for a stress-free inner
boundary, as found in figure 14a). Introducing nested viscous layers would be required
to smooth out the singularity at the Stewartson layer (Sauret & Le Dizès 2013). Another
striking point in figure 14(a) is that considering a stress-free inner boundary does not
modify the mean zonal flow when s ≤ rin

eq (red curve). Indeed, if the flow obeys stress-free
conditions on the inner boundary, the corresponding mean flow in the tangent cylinder is
only generated by nonlinear interactions within the Ekman layer at the outer boundary in
formula (5.5), and so we recover the coreless solution when s ≤ rin

eq. The agreement with
DNS is also very good for homoeoidal shells (i.e. ηpol = ηeq) in figure 14(b).

Figure 15 shows that formula (5.5) is also valid for other configurations. An excellent
agreement is found in non-homoeoidal spheroidal shells (i.e. ηpol /= ηeq with req /= rpol) as
shown in figure 15(a) or, as illustrated in figure 15(b), in homoeoidal shells with distinct
angular frequencies ωin /=ω and magnitudes εin /= ε (purple curve), or in the presence
of different kind of mechanical forcings at inner and outer boundaries (orange curve,
when the inner boundary undergoes longitudinal librations and the outer one latitudinal
librations). This confirms that formula (5.5) is valid even for such complicated cases.

We have obtained and validated so far formula (5.5) for libration angular frequencies
larger than 2 (see also in Sauret & Le Dizès 2013). One can thus wonder how this
formula compares with DNS when critical latitudes are present. Such a situation has been
recently considered for longitudinal librations in Lin & Noir (2020), for the particular
libration frequency

√
2 which is associated with conical shear layers spawned form the

critical latitudes leading to a simple closed trajectory for the forced inertial wave in a
spherical shell with ηpol = ηeq = 0.35 (e.g. Rieutord, Georgeot & Valdettaro 2001). We
revisit their results in figure 16, reproducing their figure 13(a) in our panel (a), for which
only the inner boundary is subject to librations, and their figure 17(a) in our panel (b)
that corresponds to the opposite situation. While it is very challenging to analytically
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Figure 15. Normalised geostrophic mean velocity 〈V̄φ〉/ε2 at various heights z = √
1 − s2 in shells with ηeq =

0.5. Black dashed curves indicate the theory in the shell. The DNS profiles computed at z = z0 for s ≤ ηeq and
at z0 = 0 for s > ηeq, giving a single profile for each DNS. Grey area shows the tangent cylinder s ≤ ηeq.
(a) Non-homoeoidal shells subject to longitudinal librations (solid coloured curves), with a spherical inner
boundary (i.e. rin

pol = rin
eq) and a spheroidal outer boundary (i.e. rpol /= req). DNS performed at E = 2.5 × 10−6,

ω = ωin = π, ε = εin = 5 × 10−4. (b) Homoeoidal shells with ηpol = ηeq = 0.5 and different inner and outer
forcings. Case 1: DNS at E = 10−6 in a spherical shell subject to latitudinal librations at outer boundary
(with ω = 3 and ε = 10−6), and to longitudinal librations at inner boundary (with ωin = 2, εin/ε = 2). Case
2: Spheroidal shell with rpol/req = 0.8 subject to longitudinal librations. DNS at E = 5 × 10−6 with ε = 5 ×
10−4 and ω = π at outer boundary, and with εin/ε = ωin/ω = 2 at inner boundary.

tackle properly this problem, we find that formula (5.5) provides a reasonably good
agreement with DNS, by capturing the essential features of the mean zonal flow profile.
Therefore, even in the presence of additional complicated flow structures and waves in
shell geometries, nonlinear interactions within the Ekman boundary layers still make a
significant contribution to the mean zonal flows. This agrees with previous findings in
librating cylinders (see figure 17 in Sauret et al. 2012), which showed that analytical theory
obtained in the regime ω > 2 provides the general trend for 〈V̄φ〉 at ω < 2, on which
additional mean flow contributions can be superimposed.

5.4. Planetary applications
We have shown that our theory fairly predicts the mean zonal flows in rotations ellipsoids
and shells, and for various mechanical forcings. The relevance of these mean zonal flows
ought now to be addressed for planetary applications. First, the Ekman boundary layers
must be laminar for our theory to be valid. Various mechanisms are known to destabilise
laminar Ekman boundary layers, such as Taylor–Görtler instability (Noir et al. 2009;
Calkins et al. 2010) or local shear instabilities (e.g. Lorenzani & Tilgner 2001). The
transition between laminar and turbulent Ekman boundary layers would here occur when
ε ∼ KE1/2 (Cébron et al. 2019), where K is a numerical prefactor. The first boundary-layer
instabilities would occur when K = 20 − 55 (e.g. Lorenzani & Tilgner 2001; Noir et al.
2009; Calkins et al. 2010), and fully turbulent boundary layers are expected when K � 150
(e.g. Caldwell & Van Atta 1970; Sous, Sommeria & Boyer 2013). For precession and
latitudinal librations, note that the conical shear layers spawned from the critical latitudes
(either at inner or outer boundaries) can also be prone to shear instabilities (e.g. the conical
shear instability, see Lin, Marti & Noir 2015; Horimoto, Katayama & Goto 2020).

However, the Ekman boundary layers are expected to become turbulent before the
onset of such instabilities when E � 1 (see figure 6 in Cébron et al. 2019). Next, in

916 A39-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

22
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
B 

Li
br

ar
ie

s,
 o

n 
09

 Ju
n 

20
21

 a
t 2

2:
11

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.220
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


D. Cébron et al.

–0.050 –0.3

–0.2

–0.1

0

0.1

0.2

0.3

0 0.2 0.4
s

〈V
φ
〉/ε

2 i

〈V– φ
〉/ε

2

s
0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

–0.025

0

0.025

0.050

E = 10–6

E = 10–7

Theory

(b)(a)

Figure 16. Normalised geostrophic mean velocity in a spherical shell (ηpol = ηeq = 0.35) subject to
longitudinal librations at ω = √

2. In panel (a), εin = √
2/100 and ε = 0, whereas, in panel (b), εin = 0 and

ε = √
2/100. Legend in panel (b) is identical to the one in panel (a). Coloured curves have been reproduced

from figures 13(a) and 17(a) in Lin & Noir (2020), where 〈V̄φ〉 is computed as in formula (2.8), with zmax = 1,
but only considering only the m = 0 component. Theory is given by formula (5.5). Grey areas indicate the
tangent cylinder s ≤ 0.35.

addition to laminar boundary layers, our theory also assumes laminar bulk flows. Bulk
turbulence may indeed alter the mean zonal flows, as previously reported for strong tidal
or libration forcings (e.g. Favier et al. 2015; Grannan et al. 2017). To characterise the
forcings, we introduce the dimensionless Rossby number Ro = U/(Ωsreq), where U is
the typical amplitude of the nonlinear flows driven by the mechanical forcings (based
on control parameters). Laminar bulk flows are known to be destabilised by several
instabilities when Ro ≥ KE1/2 (e.g. the elliptical instability), where Ro is also here the
typical inviscid growth rate of the instability and K = 1 − 10 is a numerical pre-factor
due to Ekman pumping (Lemasquerier et al. 2017). In ellipsoids, we have at leading
order Ro ∼ β for tides (e.g. Grannan et al. 2017; Vidal & Cébron 2017), and Ro ∼ εβ

for topographic precession (Kerswell 1993) or libration forcings (Vantieghem et al. 2015;
Vidal et al. 2019), where β is here a typical measure of the boundary (equatorial or
polar) ellipticity. Several secondary instability mechanisms could then occur to sustain
bulk-driven zonal flows. Although different in nature, these various scenarios are due to
nonlinear bulk interactions and apparently all operate on the dimensionless time scale
of order (kRo)−2 in the rapidly rotating planetary regime Ro � 1 (e.g. Kerswell 1999;
Brunet et al. 2020; Le Reun et al. 2020), where k is a typical wavenumber of the flow. On
the contrary, boundary-layer interactions establish geostrophic flows on the spin-up time
scale E−1/2. The bulk mechanisms should thus operate faster than our boundary-driven
mechanism when k2Ro2  E1/2, giving ε  E1/4/k (which is also the threshold onset for
the secondary instabilities, see in Kerswell 1999; Le Reun, Favier & Le Bars 2019). The
typical wavenumber for the aforementioned bulk mechanisms is poorly constrained from
previous studies (as these mechanisms have only been explored without taking the beta
effect into account), such that a rigorous scaling law is still unknown.

For a direct comparison with the boundary-driven zonal flows, we assume k = 1 − 10
(i.e. we focus on the large-scale components of the geostrophic flows) and illustrate the
corresponding stability diagrams for the boundary-driven and bulk-driven mechanisms
in figure 17. Typical planetary values are E = 10−15 − 10−12 and ε = 10−7 − 10−3,
depending on the considered forcing. We thus expect laminar Ekman layers in several
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Figure 17. Schematic regime diagrams for the existence of mean zonal flows driven by mechanical forcings
(planetary values estimated from Noir et al. 2009; Cébron et al. 2012; Lin et al. 2015; Vantieghem et al.
2015). Red circles: precession. Blue squares: longitudinal librations. Black triangles: latitudinal librations.
Magenta stars: tides. (a) Transition between laminar and turbulent boundary layers (BL). Transition occurs
when ε ∼ KE1/2 (with the typical values K = 20 − 150 shown by the grey area, K = 55 by the dashed dotted
line). (b) Competition between bulk- and boundary-driven generation of mean zonal flows. Input Rossby
number Ro = O(β) for tidal forcing or Ro = O(εβ) for precession and libration forcings, where β is the
typical boundary (equatorial or polar) ellipticity. Instabilities and bulk turbulence (hatched area) onsets when
Ro ∼ KE1/2 (dashed line with the value K = 10).

planetary bodies, as observed in figure 17(a). Figure 17(b) then clearly indicates that the
bulk-driven mechanisms are likely irrelevant to explain the occurrence of mean zonal flows
in planetary bodies. On the contrary, several planetary bodies may have simultaneously
laminar boundary layers and no bulk-driven turbulence, such that nonlinear interactions
within the laminar Ekman layers could be important to generate mean zonal flows.

6. Conclusion

6.1. Summary
In this work, we have investigated the mean zonal geostrophic flows in rapidly rotating
spheres and spheroids subject to weak mechanical forcings (librations, precession and
tides). Geostrophic flows are indeed often encountered in geophysical or astrophysical
systems, which are usually attributed to nonlinear interactions occurring at a small scales
(e.g. Aubert et al. 2002; Christensen 2002). However, the external mechanical forcings
can generate large-scale geostrophic flows in the bulk by nonlinear viscous effects, as
considered here. We have presented a generic asymptotic theory accounting for the various
forcings, in the double limit of small Ekman numbers E and small (dimensionless) forcing
amplitude ε, and we have analytically considered simultaneously azimuthal and temporal
variations of the forcings. We have also assessed the range of validity of the analytical
profiles as a function of the forcing frequency ω, using targeted DNS.

For all the forcings, we have shown that the leading-order mean zonal flows in the bulk
scale as ε2, and are independent of the Ekman number when ω is greater than twice the
rotation rate in the absence of inertial waves (i.e. ω ≥ 2 in dimensionless spin units), as
previously found in spherical geometries for precession (Busse 1968b) and longitudinal
librations (Busse 2010; Calkins et al. 2010; Sauret et al. 2010; Sauret & Le Dizès 2013;
Lin & Noir 2020). Moreover, we have shown that these flows can be significantly modified
in spheroids subject to longitudinal librations. Our asymptotic theory provides thus a
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reliable point of comparison for forthcoming experimental measurements, for instance in
the ZoRo experiment (Zonal jets in Rotating fluids, see Su et al. 2020; Vidal et al. 2020)
that is currently used to investigate libration-driven zonal flows.

Then, the existence of critical latitudes and inertial waves when ω < 2 is known to
lead to more complicated mean zonal flows in terms of amplitude and structure. Indeed,
the critical shear layers spawned from the critical latitudes (e.g. Kerswell 1995) are
responsible for zonal geostrophic shears at the singular points of the theoretical profiles.
We have numerically confirmed that the geostrophic shear driven by longitudinal and
latitudinal librations has a typical width δs ∝ E1/5 and a characteristic amplitude δug/ε

2 ∝
E−1/10 when ω  E1/10, which contrasts with the scaling law δug/ε

2 ∝ E−3/10 for the
geostrophic shear driven by precession.

Finally, we have investigated how the mean zonal flows are modified in the presence of
a solid inner core. We have focused on libration-driven flows to revisit previous numerical
findings at low E in shells (Lin & Noir 2020). Interestingly, we have shown that the mean
zonal flows in homoeoidal shells can be fairly estimated from the coreless solutions, in
agreement with previous analytical works (Sauret et al. 2012; Sauret & Le Dizès 2013).

6.2. Perspectives
Further work remains to be done to obtain a more complete description of the generation
of mean zonal flows in rapidly rotating bodies. In particular, the competition between
bulk-driven and boundary-driven zonal flows should be quantitatively investigated in
future studies, to go beyond the qualitative picture discussed above. The forcing amplitude
was indeed set here to be small enough, to filter out any fluid instabilities that can grow in
the bulk (e.g. Kerswell 2002; Lin et al. 2015; Vantieghem et al. 2015; Vidal & Cébron
2017; Nobili et al. 2021). Only a few experimental or numerical works have hitherto
studied mean zonal flows in the presence of bulk turbulence (e.g. Favier et al. 2015;
Grannan et al. 2017; Le Reun et al. 2019). Yet, it is difficult to draw robust planetary
conclusions from these studies, which only explored the dynamics for values of ε and E
that were not representative of the planetary regime. Therefore, the competition between
bulk and boundary mechanisms remains to be explored in the geophysically relevant
regime of small forcing amplitudes ε � 1 and small Ekman numbers E � 1. To do so,
note that the curvature of the boundaries (i.e. the beta effect) should be included to obtain
realistic large-scale zonal flows for planetary systems. However, this effect cannot be
consistently taken into account in any local Cartesian models that are commonly used
in turbulence (e.g. Godeferd & Moisy 2015). Consequently, we should strive considering
global geometries to develop more realistic models of planetary bodies.

Apart from the interplay with bulk turbulence, the boundary layers could also become
turbulent in the presence of strong enough forcings (e.g. Noir et al. 2009; Calkins et al.
2010; Sous et al. 2013), which could modify the boundary-driven geostrophic flows. The
geostrophic shear attached to the critical latitudes should also be further characterised.
For instance, a naive extrapolation of the aforementioned scaling laws would predict an
amplitude for the geostrophic shear velocity of ∼ 10−1 m · s−1 for the lunar precession
(figure 17), which is an order of magnitude larger than the expected differential velocity
between the lunar core and mantle (Williams et al. 2001). Therefore, the observed scaling
laws cannot be valid in the asymptotic regime of very low Ekman numbers, as previously
reported in preliminary experiments (Morize et al. 2010). The intense geostrophic
differential rotation at the critical latitudes could also become unstable (Sauret et al. 2014),
for instance due to shear instabilities (e.g. Busse 1968a; Schaeffer & Cardin 2005), which
may lead to space-filling turbulence and mixing. Moreover, the shell geometry should be
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Mean zonal flows in rotating spheroids

further explored for more accurate planetary applications. Additional viscous effects are
indeed expected due to the presence of an inner core (e.g. the reflection of inertial waves,
see Lin & Noir 2020), such that exploring shell geometries should be further continued.
Moreover, we have only validated formula (5.5) for a few libration-driven zonal flows,
but it could apply to other forcings (e.g. precession) in shell geometries or possibly other
geometries. For instance, ignoring the need for joining corner regions (as in Wedemeyer
1966), mean zonal flow can be calculated in no-slip half-spheroids (as e.g. in Noir et al.
2012) by summing the contribution of the plane boundary layer (i.e. half the mean zonal
flow in the cylinder, given by Wang 1970) and the contribution of the curved boundary
(i.e. half the one of the full spheroid).

Finally, the core–mantle boundary of most planets exhibits roughness (Narteau et al.
2001; Le Mouël et al. 2006), but scant attention has been given to the flow dynamics
in the presence of small-scale topography (e.g. Burmann & Noir 2018). However, our
asymptotic theory could be used to get further physical insights into topographic effects for
planetary applications. A small-scale azimuthal roughness could be mimicked here using
the multipolar tidal-like forcing (2.4) with ω = 0 and Ωc = 0 (such that U = ẑR × r). The
mathematical problem is tractable in the short azimuthal wavelength approximation (i.e.
m  1), and we obtain the mean zonal flow f (s) = s2(m−2)/4 → 0 when m → ∞ (the
mean zonal flow driven by weak librations of a rotating sphere also vanishes in the limit
ω  1, see Sauret & Le Dizès 2013). Therefore, it appears that a small-scale azimuthal
roughness is unlikely to sustain significant mean zonal flows in planetary interiors via
this mechanism. Investigating this problem deserves further numerical work, as well as
exploring the flows driven by other small-scale topographies.
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Appendix A. Central regularity conditions with finite differences

We detail here how the central conditions is implemented with finite differences in
XSHELLS. We expand the velocity field V onto the set of spherical harmonics Ym

l using
the poloidal–toroidal decomposition in spherical coordinates (r, θ, φ)

V =
∑
l≥1

∑
|m|≤l

V m
l , V m

l = ∇ × ∇ × (Pm
l (r)Ym

l r) + ∇ × (Tm
l (r)Ym

l r), (A1a,b)

where [Pm
l (r), Tm

l (r)] are the poloidal–toroidal radial scalars. These scalars must satisfy
regularity conditions at the centre for the vector field to be regular and infinitely
differentiable. To do this, the two scalars and the Cartesian components of the velocity
fields must behave like monomials in the Cartesian coordinates (x, y, z). This is ensured
by expanding [Pm

l (r), Tm
l (r)] in the regular form (e.g. Dudley & James 1989)

[Pm
l (r), Tm

l (r)] =
∑
j≥0

[Aj, Bj]r2j+l, (A2)

where [Aj, Bj] are unknown coefficients. At the centre r = 0, the (l, m) components for the
velocity (A1) then reduce to

V m
l =

{
2A0(Ym

1 , ∂θYm
1 , (1/ sin θ)∂φYm

1 )� for l = 1,

(0, 0, 0)� for l /= 1,
(A3)

with A0 = ∂rPm
1 |r=0. Within XSHELLS, the poloidal decomposition is implemented using

vector spherical harmonics that depend on the radial scalar l(l + 1)Pm
l /r, the spheroidal

scalar Sm
l = (1/r)∂r(rPm

l ) and the toroidal scalar Tm
l . Therefore, we obtain from (A3) the

following regularity conditions for a finite difference scheme

Pm
l (r = 0) = 0, Tm

l (r = 0) = 0, Sm
l (r = 0) =

{
2∂rPm

1 |r=0 for l = 1,

0 for l /= 1.
(A4a–c)

This allows a non-zero velocity at the centre, corresponding to a flow going through it.
These regularity conditions apply to the velocity, but also to the vorticity W m

l , which is
related to the velocity

W m
l = ∇ × ∇ × ∇ × (Pm

l (r)Ym
l r) + ∇ × ∇ × (Tm

l (r)Ym
l r) (A5)

= ∇ × (−ΔPm
l (r)Ym

l r) + ∇ × ∇ × (Tm
l (r)Ym

l r). (A6)

Applying the same reasoning as above leads to condition (A4) with Pm
l = 0 replaced by

Tm
l = 0 and Tm

l = 0 replaced by ΔPm
l = 0. For l = 1, this also leads to ∂rrPm

1 |r=0 = 0.
This vanishing second-order derivative of Pm

1 ensures that the error for the 2-point finite
difference approximation of Sm

1 (r = 0) is of order 2

Sm
1 (r = 0) = 2∂rPm

1 |r=0 = 2Pm
1 (ε)/ε + O(ε2). (A7)

The above conditions are actually simpler to implement with finite differences than with
some spectral descriptions in radius (e.g. see the discussion in Livermore & Jackson 2005).
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Mean zonal flows in rotating spheroids

In addition, to avoid a stringent restriction on the time-step size, the spherical harmonic
expansion is truncated near the centre at lower degrees

ltr(r) = lmax

√
r

α max(r)
+ 1, (A8)

where lmax is the maximum spherical harmonic degree in the DNS, and α = 0.05 is
found to be an appropriate parameter to avoid spurious numerical errors near r = 0 while
allowing large enough time steps. In practice, our resolution for all the DNS ensured that
the truncation quickly jumps to l ≥ 6 at the second radial point (not shown), ensuring a
sufficient numerical resolution.

Finally, the above numerical implementation is accurate enough to determine the values
of the mean flow rotation rate f near the centre. Indeed, defining

〈V̄φ〉/s =
∑
l≥1

V̄ 0
l · φ̂/s, (A9)

with the cylindrical radius s = r sin θ , we obtain the value of the rotation rate in the
equatorial plane θ = π/2 (i.e. z0 = 0) from the toroidal component T0

1 (r)

〈V̄φ〉/s = −∂rT0
1 |r=0∂θY0

1 |θ=π/2. (A10)

Expression (A10) shows that, as expected, the rotation rate is regular on the axis of rotation
(and more generally in coreless geometries, e.g. see Lewis & Bellan 1990), with a possible
non-zero value ∝ ∂rT0

1 |r=0 due to the l = 1 spherical harmonic in full spheres.
The error for the 2-point finite difference approximation of f (r = 0) ∝ ∂rT0

1 (r = 0) is
guaranteed to be of order 1

f (r = 0) ∝ ∂rT0
1 |r=0 = T0

1 (ε)/ε + O(ε). (A11)

We took special care to refine the grid near r = 0 to ensure the reported values for f (r = 0)

are meaningful, although they are less accurate than the values away from 0.

Appendix B. Details on the theoretical calculations

In this appendix, we first provide some useful formulas in the spheroidal coordinates used
in this work (§ B.1). We then provide details on the calculation of the first-order flows in
the bulk (§§ B.2–B.4) and in the boundary layer (§ B.5).

B.1. Miscellaneous formula in our spheroidal coordinates
The ratio of the spheroid axes is rpol/req = T ′

(Q1)
/T(Q1). For oblate and prolate spheroidal

coordinates, it gives respectively rpol/req = tanh Q1 and rpol/req = coth Q1. Note that we
only have n̂ = q̂1 at the boundary q1 = Q1. Using these coordinates, the leading-order
bulk flow is then Ω0ẑR × r = Ω0sφ̂, where s = (x2 + y2)1/2 = aT(q1) sin q2 is the
cylindrical radius. Finally, the iso-surface for q1 becomes more and more spherical when
q1 becomes large, with a spherical radius r given by a exp(q1) ≈ 2r.

Note also that, for every boundary-layer flow v of components v = (0, v2, vφ)� in our
spheroidal coordinates, we have

n̂ · ∇ ×
∫ ∞

0
n̂ × v dζ = 1

a sin q2

[
1

h̃

∂

∂q2
(sin q2

∫ ∞

0
v2 dζ ) + 1

T(q1)

∂

∂φ

(∫ ∞

0
vφ dζ

)]
,

(B1)

where the last term vanishes when calculating the mean zonal component of v.
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D. Cébron et al.

B.2. Generic solution for the forced interior flow PU1
0

Using the Cartesian coordinates of our frame of reference, the uniform-vorticity flow
satisfying the no-penetration condition is given by (e.g. Noir & Cébron 2013)

U1
0 =

⎛⎝ f 2
0 QyzR − QzyR

−f 2
0 QxzR + QzxR

f 2
0 (rpol/req)

2[QxyR − QyxR]

⎞⎠ , (B2)

with f 2
0 = 2/(1 + r2

pol/r2
eq), and where the (constant) rotation vector Q = (∇ × U1

0)/2
has the Cartesian components Q = Qxx̂R + QyŷR + QzẑR given by

Qx = Q̂x cos(ωt) + Q̂�
x sin(ωt), (B3a)

Qy = (Q̂y sin ωt + Q̂�
y cos ωt), (B3b)

Qz = −Q̂z cos(ωt). (B3c)

This generic form encompasses all the particular cases considered in this article, and is
compliant with the ansatz used below to integrate equations (2.15a,b).

For instance, the flow U1
0 driven by longitudinal librations in the mantle frame of

reference is obtained with Q = − cos(ωt)ẑR. For latitudinal librations, the viscous flow in
the mantle frame of reference is obtained from Vantieghem et al. (2015). We have corrected
a few typos in their expressions (3.29)–(3.31), which leads to

Q̂x = (ω2 − f 2)( f 2
0 − ω2) − K2( f 2

0 + ω2)

(ω2 − f 2)2 + 2K2( f 2 + ω2) + K4 , (B4a)

Q̂�
x = Kω

ω2 + f 2 − 2f 2
0 + K2

(ω2 − f 2)2 + 2K2( f 2 + ω2) + K4 , (B4b)

Q̂y = ω
βbc(ω

2 − f 2) − K2(1 + f 2/f 2
0 )

(ω2 − f 2)2 + 2K2( f 2 + ω2) + K4 , (B4c)

Q̂�
y = K

ω2 + f 2 − 2ω2f 2/f 2
0 + K2

(ω2 − f 2)2 + 2K2( f 2 + ω2) + K4 , (B4d)

with βbc = ( f 2 − f 2
0 )/f 2

0 , K = ΛE1/2 where Λ ≥ 0 is the viscous damping factor, and
with the eigenfrequency f of the spin-over mode, that is f = f 2

0 for the spheroid as in
Vantieghem et al. (2015). Yet, note the erroneous presence in their formula (3.30) of βbc in
Q̂�

y, as well as that of ẑM instead of ẑI in their expression (A5). In the inviscid limit E = 0,
we have Q̂�

x = Q̂�
y = 0 and, for a spheroid,

Q̂x = ( f − ω2)/(ω2 − f 2), Q̂y = ωβ/(ω2 − f 2), (B5a,b)

where β = (r2
eq − r2

pol)/(r
2
eq + r2

pol), giving a diverging flow at ω = f for any spheroids

(except the sphere β = 0, where the solution reduces to Q̂x = −1 and Q̂y = 0). Finally,
the precession-driven flow U1

0 can be written under this form in the mean rotating frame
(with ω = 0), also called precessing frame, or in the mantle frame (Noir & Cébron 2013).
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Mean zonal flows in rotating spheroids

B.3. Calculation of HU1
0 for longitudinal librations

In their analytical study, Greenspan & Howard (1963) considered longitudinal librations
at ω � 1 in axisymmetric arbitrary containers of revolution around the ẑR, and obtained
HU1

0 in the form of a quasi-geostrophic flow. Their assumption ω � 1 implies a steady
boundary layer at leading order, whereas the boundary layer can be time dependent when
ω  E1/2 (as considered in the main text), in particular when ω ≥ O(1). Since the two
regimes overlap for E1/2 � ω � 1, we aim to understand the transition between these
two situations. To do so, we determine below the quasi-geostrophic component gU1

0 of
HU1

0 for arbitrary values of ω, extending the study of Greenspan & Howard (1963) to
time-dependent boundary-layer flows. The slight differences between HU1

0 and gU1
0 will

then be briefly studied by performing the exact calculation in the particular case ω > 2
(i.e. without any critical latitude).

Using cylindrical coordinates (s, φ, z) in the mean rotating frame, we consider a fluid
within an arbitrary axisymmetric container g̃1(s) ≤ z ≤ g̃2(s), with g̃1(s) ≤ 0 and g̃2(s) ≥
0. The zonal (i.e. m = 0) component zoU1

0 of HU1
0 can be written as

zoU1
0 = −∇ × (Ψ 1

0 (s, z, t)φ̂) + V1
0 (s, z, t)φ̂ = [∂zΨ

1
0 ,V1

0 , −∂s(sΨ 1
0 )/s]�, (B6)

which satisfies divergenceless condition (3.3b). Then, the curl of (3.3a), that is

(∂t + Ω0∂φ)∇ × (HU1
0) − 2Ω0

s (ẑR · ∇)HU1
0 = 0, (B7)

can be written in this case

∂tV1
0 = −2∂zΨ

1
0 , ∂t(L̃Ψ 1

0 ) = 2∂zV1
0 , (B8a,b)

with L̃Ψ 1
0 = (∇2 − s−2)Ψ 1

0 = ∂s[s−1∂s(sΨ 1
0 )] + ∂2

zzΨ
1
0 . To obtain the quasi-geostrophic

component gU1
0 of HU1

0, the velocity components perpendicular to the rotation axis are
assumed to be z−invariant (Labbé, Jault & Gillet 2015). Then, (B8) naturally reduces to
the Taylor–Proudman constraint ∂z(gU1

0) = 0. Using the axisymmetric decompositions

gU1
0 + E1/2U1

1 = −E1/2∇ × (χIφ̂) + VIφ̂, (B9a)

gu1
0 + E1/2u1

1 = −E1/2∇ × (χBφ̂) + VBφ̂, (B9b)

where we have anticipated that the meridional streamfunctions are of the order E1/2 (as in
Greenspan & Howard 1963), we obtain ∂τVI + 2∂zχI = 0 and then

χI = −(z/2)∂τVI + χ0
I , (B10)

as previously obtained by Greenspan & Howard (1963). As we follow closely the approach
and the notations of Greenspan & Howard (1963), we do not reiterate below all the
intermediate steps. In the boundary layer, (5.7)–(5.10) of Greenspan & Howard (1963)
are modified into (see also (3.2) in Sauret & Le Dizès 2013)

(∂2
ζ ζ − ∂t)VB − 2n̂ · ẑR∂ζχB = 0, (∂2

ζ ζ − ∂t)∂
2
ζ ζ χB + 2n̂ · ẑR∂ζVB = 0, (B11a,b)

which can be integrated by considering the ansatz eiωt for [χI, χB,VI,VB], leading to

VB = s(1 − f0)
4

(e−λ+ζ + e−λ∗−ζ )eiωt + c.c., (B12)

with VI = �m(f0s eiωt), and c.c. the complex conjugate. Note that (B12) can naturally be
exactly recovered with (B27) by considering the BC u1

0 + U1
0 = V 1

Σ with a non-zero gU1
0.
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Figure 18. Normalised (instantaneous) rotation rate Vφ/(εs) as a function of time for longitudinal librations
of a sphere (E = 10−6 and ε = 10−4), at position (s = 0.9, q2 = π/2) in the equatorial plane. DNS are given
by the solid red lines and the theory Vφ/(εs) = �m(f0 eiωt), where f0 is given by (B15a), is shown as dotted
blue and dashed green lines, when calculating S with (B15b) or with its approximation for ω = 0, respectively.
(a) ω = 10−2 and (b) ω = 3.

From (B11) we get

χB(ζ = 0)|z=g̃i = sgn(g̃i)
s(1 − f0)Λ̃i

4
eiωt + c.c., (B13a)

Λ̃i = 1
2|n̂i · ẑR|

[
λ++λ∗− − iω

(
1
λ+

+ 1
λ∗−

)]
, (B13b)

with |n̂i · ẑR| = [1 + (dsg̃i)
2]−1/2, and where the terms λ+ and λ∗− involved in Λ̃i have

to be calculated with the associated n̂i · ẑR (noting dsg̃i the derivative of the one-variable
functions g̃1(s) ≤ z ≤ g̃2(s) describing the container geometry). Then, the BC χB + χI =
0 can be written using (B10) and (B13) as

∂τVI = 2[χB(ζ = 0)|z=g̃2 − χB(ζ = 0)|z=g̃1][g̃2 − g̃1]−1, (B14a)

χ0
I = [g̃1χB(ζ = 0)|z=g̃2 − g̃2χB(ζ = 0)|z=g̃1][g̃2 − g̃1]−1, (B14b)

which provides χ0
I = �m(A0 eiωt) and

f0 = (1 + iωS−1E−1/2)−1, S = (Λ̃1 + Λ̃2)/(g̃2 − g̃1). (B15a,b)

Equation (B15) gives VI , but also χI using (B10), providing both the geostrophic part of
U1

0 and the associated component of U1
1. The asymptotic regime studied by Greenspan &

Howard (1963) is recovered by using ω = 0 in S (i.e. ω � 1), that is when the boundary
layer can be assumed to be steady (giving e.g. S ≈ (1 − s2)−3/4 within the sphere in this
regime). In figure 18(a), we confirm that this approximation is in excellent agreement
with DNS for ω � 1. By contrast, figure 18(b) shows that only the more complete theory
developed here is in excellent agreement with DNS for ω ≥ O(1), as expected. We now
come back to our initial question of the decrease of the bulk flow VI in the limit ω  E1/2,
for the opposite regimes ω � 1 and ω  1. Since S is independent of ω in the particular
regime ω � 1, (B15) shows that VI decreases toward 0 as VI ∼ E1/2/ω. By contrast, S ∼√

ω for ω  1, showing that VI decreases toward 0 as VI ∼ √
E/ω in this regime.

To confirm further that gU1
0 is a good approximation of HU1

0, we now aim at
obtaining HU1

0 directly from (B8) without the quasi-geostrophic assumption. To this end,
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Mean zonal flows in rotating spheroids

we have adapted the calculation of Wang (1970) performed in cylinders. With the ansatz
(V1

0 , Ψ 1
0 ) = (V̂1

0 , Ψ̂ 1
0 )eiωt + c.c. and noting ω̃ = 1 − 4/ω2, (B8) gives

∂s[∂s(sΨ̂ 1
0 )/s] + ω̃∂2

zzΨ̂
1
0 = 0, (B16)

whose general solution is (imposing regularity at s = 0)

Ψ̂ 1
0 =

∑
k

J1(C̃ks)[ÃkeC̃kz/ω̃1/2 + B̃ke−C̃kz/ω̃1/2
], (B17)

with J1 the Bessel function of the first kind and with the constants [Ãk, B̃k, C̃k]. In the
quasi-static regime ω → ∞, the leading order naturally recovers the linear z-dependency
of quasi-geostrophic solution (B10). In symmetric containers with g̃1 = −g̃2, we have
Ψ̂ 1

0 (z = 0) = 0 by symmetry, such that Ãk = −B̃k. Equation (B17) then reduces to

Ψ̂ 1
0 =

∑
k

ÃkJ1(C̃ks) sinh
C̃kz
ω̃1/2 . (B18)

The (complex-valued) constants [Ãk, C̃k] are then fixed by the BC Ψ 1
0 + E1/2χB = 0

at ζ = 0, where χB is given by (B13). Contrary to the cylinder, the properties of
Fourier–Bessel series cannot be used to obtain the constants (Wang 1970). Using f0 = v̂φ/s
and v̂φ = −2∂zΨ̂

1
0 /(iω) in χB(ζ = 0), the BC reads

Λ̃2

4
s +

∑
k

ãkJ1(C̃ks)

[
sinh

C̃kz
ω̃1/2 − iΛ̃2C̃k

2ωω̃1/2 cosh
C̃kz
ω̃1/2

]
= 0, (B19)

with ãk = Ãk/E1/2. When ω < 2, many terms are required in (B19) to accurately fulfil this
BC (due to the divergence at the critical latitude). In this case, bulk inertial modes can also
be excited (e.g. Aldridge & Toomre 1969; Zhang & Liao 2017), and they can then constitute
a better basis to describe Ψ̂ 1

0 . By contrast, we find that only few terms are necessary for
ω > 2, and there is no excitation of inertial mode. Considering for instance ω = 3 in the
sphere (s = sin θ , z = cos θ ) and the first three terms of Ψ̂ 1

0 , we impose the BC at six
equally spaced values of the colatitude θ ∈]0, π/2[. The numerical integration of this
nonlinear system of six equations provides then the 6 constants, with ã1 ≈ 0.26 + 0.65i
and C̃1 ≈ 0.63 − 0.21i for the leading-order term (ã2 and ã3 are respectively ∼ 10 and ∼
103 times smaller, showing convergence of the series). One can then check a posteriori that
BC (B19) is verified on the whole range θ ∈ [0, π/2] with a maximum error < 2 × 10−6.
Using these constants, we can then calculate the three components of velocity and compare
with DNS. This solution naturally recovers the excellent agreement shown in figure 18(b),
and even agrees slightly better with DNS as shown in figure 19(a) for s = 0.1. As can be
expected, this difference is due to the weak departure of the flow from quasi-geostrophy, as
shown in figure 19(b) that is in perfect agreement with our DNS. To conclude this section,
note that the mean zonal component of (HU1

0 · ∇)HU1
0 is non-zero, and HU1

0 may modify
the bulk mean zonal flow when not considering the no spin-up regime ω  E1/2.

B.4. Inertial modes excited by longitudinal librations and mean zonal flows
Longitudinal librations can excite inertial modes through the Ekman pumping u1

1
generated by the oscillating Ekman layer (see §§ 2.12 and 2.14 in Greenspan 1968).

916 A39-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

22
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
B 

Li
br

ar
ie

s,
 o

n 
09

 Ju
n 

20
21

 a
t 2

2:
11

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.220
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


D. Cébron et al.

–0.03

55.0 57.5
t

V φ
/(

εs
) 

(×
1
0

2
)

60.0 62.5

–0.02

–0.01

0

0.01

0.02

0.03 0.125

0.100

0.075

0.050

0.025

0

(b)(a)

+1.256×105

Figure 19. (a) Same as in figure 18(b) but at s = 0.1 and showing the solution obtained from (B18) with the
black dashed line. (b) Snapshot v̂φ = −2∂zΨ̂

1
0 /(iω) in a meridional section of the theoretical azimuthal flow

obtained from (B18). We obtain an excellent agreement with the analogous snapshot from DNS (not shown).

The amplitude of such forced inertial modes is of the order O(εE0) when the forcing
frequency ω  E1/2 matches the frequency of an inertial mode (Greenspan 1968;
Aldridge & Toomre 1969; Zhang & Liao 2017). This inertial mode excitation is not an
inviscid resonance (as encountered e.g. with latitudinal librations, see Vantieghem et al.
2015), and thus its amplitude remains finite in the limit E → 0 (but vanishes when E = 0).
For a sphere in longitudinal libration at the inertial mode frequency ω = ω12 = √

12/7 ≈
1.309, Zhang & Liao (2017) obtained the following flow in spherical coordinates (r, θ, φ)

in the container frame (rotating at Ωc = 1 + ε sin ωt here)

PU1
0 = �e(is eiω12tφ̂), (B20a)

HU1
0 = �e

(
15Ã12

4

[
i
√

3

2
√

7
((r3 − r)(1 + 3 cos 2θ)r̂ + sin 2θ(3r − 5r3)θ̂)

+ sin θ(2r3 + r3 cos 2θ − r)φ̂

]
eiω12t

)
, (B20b)

Pu1
0 = �e

(
sin θ

[
− iφ̂ − θ̂

2
eλ+ζ − iφ̂ + θ̂

2
eλ

∗−ζ

]
eiω12t

)
, (B20c)

Hu1
0 = �e

(
15Ã12

4

[
i
2
(1 + cos 2θ − ω12 cos θ) sin θ(iφ̂ − θ̂) eλ+ζ

+ i
2
(1 + cos 2θ + ω12 cos θ) sin θ(iφ̂ + θ̂) eλ

∗−ζ

]
eiω12t

)
, (B20d)

with Ã12 = 0.034156 − i0.13641, and noting u1
0 = Pu1

0 + Hu1
0 where Pu1

0 (respectively
Hu1

0) is the boundary-layer flow associated with PU1
0 (respectively HU1

0). In the container
frame considered in Zhang & Liao (2017), the flow is mainly an apparent one, that is the
oscillating solid-body rotation PU1

0 directly related to the frame motion (there is no spin
up since ω  E1/2). By contrast with the findings of Zhang & Liao (2017), the bulk flow
reduces to the inertial mode in the mean rotating frame (where PU1

0 = 0), and is then
strongly dependent on ω (similar to the findings of Aldridge & Toomre 1969, who found a
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Figure 20. Mean zonal flow driven by longitudinal librations of a sphere, from theory and DNS (E =
10−7, ε = 10−4). (a) Geostrophic velocity sf as a function of the cylindrical radius s, at the inertial mode
eigenfrequency ω = √

12/7 (Zhang & Liao 2017). DNS (solid line) does not agree well with the theory,
whether HU1

0 is taken into account (dashed line) using (B20) or not (dotted line). (b) Rotation rate f at s = 0.6,
as a function of the libration frequency ω, given by the theory (solid line) assuming HU1

0 = 0. Dashed lines
show the four least damped inertial modes in figure 3 of Aldridge & Toomre (1969), including ω = √

12/7.

way to measure this effect). Note, however, that Pu1
0 /= 0 in the mean rotating frame (due

to the oscillating boundary velocity), and this flow generates the mean zonal flow in the
absence of any other bulk flows (e.g. when no inertial mode is excited with ω > 2).

Beyond the mean zonal flow obtained by assuming HU1
0 = 0 (i.e. generated by Pu1

0
only), as mainly considered in this work, one can use (B20) to calculate how this mean
flow is modified by the bulk inertial mode (i.e. by the non-zero HU1

0 and Hu1
0). To do so,

we first note that the mean zonal component of (HU1
0 · ∇)HU1

0 + 2Ω1
c × HU1

0 is zero. One
can thus proceed exactly as in §§ 3.2–3.4 to integrate equations (2.18) and (2.19). The result
is shown in figure 20(a), where it is compared with DNS and with the mean zonal flow
generated by Pu1

0 only. Note that the presence of the critical latitude is difficult to spot on
the DNS mean zonal flow (by contrast with ω = 0.1 or ω = 1, see figure 10b). Moreover,
the disagreement suggests that considering a single forced inertial mode HU1

0 in (2.18)
and (2.19) is not sufficient to explain the generation of the observed jets. Contributions
neglected in the theory are thus expected to be significant, such as the presence of several
inertial modes in the bulk, or nonlinear interactions within the internal shear layers (as in
Lin & Noir 2020).

To perform a more systematic comparison, we show in figure 20(b) the mean zonal flow
rotation rate (at s = 0.6) given by the theory (assuming HU1

0 = 0) and by DNS. One can
observe the expected divergence at ω = 2 cos sin−1 0.6 = 1.6, due to the presence of the
critical latitudes. Note also the overall rather good agreement, except near inertial mode
frequencies excited by the forcing (the apparent good agreement at the eigenfrequency
ω = √

12/7 is coincidental and related to the choice s = 0.6, as shown in figure 20a).

B.5. First-order boundary-layer flow
Integrating the coupled ordinary differential equations (3.4), we obtain

Y k =
(

A1eαk+ζ + A2e−αk+ζ + A3eαk−ζ + A4e−αk−ζ

−i[A1eαk+ζ + A2e−αk+ζ ] + i[A3eαk−ζ + A4e−αk−ζ ],

)
(B21)
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with αk± = (1 + is±)
√|γ1 ± γk|, and s± = sgn(γ1 ± γk). The boundary-layer velocity

vanishes when ζ → ∞, imposing A1 = A3 = 0. We thus finally obtain

Y =
∑

k

(
[Ake−αk+ζ + Bke−αk−ζ ]ei(ωkt+mkφ)

−i[Ake−αk+ζ − Bke−αk−ζ ]ei(ωkt+mkφ)

)
, (B22)

where Ak and Bk are directly obtained using BC (2.15b). The velocity V 1
Σ imposed at

the spheroidal boundary depends on the problem at hand. Here, we consider that V 1
Σ can

generically be written as

V 1
Σ = V m + V st + V un, V m = Q̃z cos(ωt)sq−1 cos(mφ)ẑR × r, (B23a,b)

where V m is the multipolar and oscillating extension of the BC used by Suess (1971),
who considered the particular case ω = 0 and m = 2. In (B23), V un is a uniform-vorticity
flow, of the form (B2) but with the rotation vector q̃ = (q̃x, q̃y, q̃z), and the velocity V st =
V sb − n̂ · V sb is given by the tangential components on Σ of the solid-body rotation V sb =
Q̃x cos(ωt)x̂R × r. Since U1

0 − V un is a uniform-vorticity flow, we assume that q̃ is of the
form of Q, that is

∇ × (U1
0 − V un)

2
= Q − q̃ =

⎛⎝Qx cos ωt + Q�
x sin ωt

Qy sin ωt + Q�
y cos ωt

−(Q̂z + ˆ̃qz) cos ωt

⎞⎠ . (B24)

The last component in (B24) allows us to reproduce the particular case m = 0 of
expression (B23b). Since non-zero Q̂z + ˆ̃qz will only be considered when m = 0, we
simplify the equations by replacing Q̃z by Qz in expression (B23b), with Qz = Q̃z +
ˆ̃qz − Q̂z, and by putting Q̂z + ˆ̃qz = 0 in (B24). Then, replacing the m = 1 dependency
of V un + V st by the formal m dependency imposed by the ansatz of Y , (2.15b) gives

u1
0 = V m + V st + V un − U1

0

= 1
4

⎛⎝ 0
A(1)

− C1
1 − A(−1)

− C−1
−1 + A(1)

+ C−1
1 − A(−1)

+ C1
−1

B(1)
− C1

1 + B(−1)
− C−1

−1 + B(1)
+ C−1

1 + B(−1)
+ C1

−1

⎞⎠ (B25)

at the boundary q1 = Q1, with Cl
k = exp[i(kmφ + lωt)] and

A( j)
± = iQ̃xa sinh 2Q1

2h̃
+ ah̃ tanh(2Q1)[∓j(Q�

x∓Q�
y) − i(Qx ± Qy)], (B26a)

B( j)
± = −Q̃xaT ′

(Q1)
cos q2 + Qzsq

+ a tanh(2Q1)T(Q1) cos q2[(Qx ± Qy) ∓ ij(Q�
x∓Q�

y)]. (B26b)
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Mean zonal flows in rotating spheroids

Using BC (B25), (B22) gives Y , and u1
0 reads

u1
0 · q̂1 = 0, (B27a)

u1
0 · q̂2 = 1

8
[(A(1)

+ e−λ+ζ + A(1)
− e−λ∗−ζ )C1

1 − (A(−1)
+ e−λ∗+ζ + A(−1)

− e−λ−ζ )C−1
−1

+ (B(1)
+ e−κ+ζ + B(1)

− e−κ∗−ζ )C−1
1 − (B(−1)

+ e−κ∗+ζ + B(−1)
− e−κ−ζ )C1

−1],
(B27b)

u1
0 · φ̂ = − i

8
[(A(1)

+ e−λ+ζ − A(1)
− e−λ∗−ζ )C1

1 + (A(−1)
+ e−λ∗+ζ − A(−1)

− e−λ−ζ )C−1
−1

+ (B(1)
+ e−κ+ζ − B(1)

− e−κ∗−ζ )C−1
1 + (B(−1)

+ e−κ∗+ζ − B(−1)
− e−κ−ζ )C1

−1],
(B27c)

with

A( j)
± = A( j)

− ± iB( j)
−

= a tanh(2Q1)[−i(Qx − Qy) − j(Q�
x+Q�

y)](h̃ ∓ T(Q1) cos q2)

+ iQ̃xa[sinh(2Q1)/(2h̃) ∓ T ′
(Q1)

cos q2] ± iQzsq (B28a)

B( j)
± = A( j)

+ ± iB( j)
+

= a tanh(2Q1)[−i(Qx + Qy) + j(Q�
x−Q�

y)](h̃ ∓ T(Q1) cos q2)

+ iQ̃xa[sinh(2Q1)/(2h̃) ∓ T ′
(Q1)

cos q2] ± iQzsq, (B28b)

and

λ± = [1 + isgn(γ1 ± γ+)]
√

|γ1 ± γ+|, κ± = [1 + isgn(γ1 ± γ−)]
√

|γ1 ± γ−|,
(B29a,b)

where we have introduced γ± = (mΩ0 ± ω)/2. Note also the following identities λ± =
isgn(γ1 ± γ+)λ∗±, λ±/λ∗± = −λ∗±/λ± and λ±/λ∗±

3 = λ∗±/λ3± (see also Busse 2010), with
similar identities for κ±. In order to ease the cumbersome calculation of the mean zonal
flow, it is also useful to already note that

∂λ±
∂q2

= −sgn(γ1 ± γ+)
γ1T ′

(q1)
2 tan q2

h̃2λ∗±
,

∂κ±
∂q2

= −sgn(γ1 ± γ−)
γ1T ′

(q1)
2 tan q2

h̃2κ∗±
,

(B30a,b)

which also gives the derivative of the complex conjugates by swapping λ± and λ∗± (as well
as κ± and κ∗±).

The boundary-layer flow u1
0 is actually generated by the differential velocity u1

0 = V 1
Σ −

U1
0 at the boundary, and can thus be the same in various frames of reference. Considering

for instance longitudinal librations (m = 0), we have Q̃z = 1 and Q̂z = 0 in the mean
rotating frame (i.e. an oscillating boundary with a zero basic flow), which gives Qz = 1.
By comparison, we have Q̂z = 1 and Q̃z = 0 in the wall frame (oscillating basic flow with
a zero boundary velocity), which also gives Qz = 1 and thus u1

0 is formally the same in
both frames of reference.
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As illustrating examples, we give below the expression of u1
0 in few particular simpler

cases. Considering for instance the latitudinal librations of a sphere in the mean rotating
frame of reference, V 1

Σ = V un = ε cos(ωt)x̂R × r can be imposed using Qx = −1 and
m = 1, discarding the other possible contributions to V 1

Σ (i.e. Qy = Q�
y = Q�

x = Qz =
Q̃x = 0). Then, in the spherical geometry limit q1 → ∞, (B27) reduces to

u1
0r = 0, (B31a)

u1
0θ = 1

8
[(A(1)

+ e−λ+ζ + A(1)
− e−λ∗−ζ )ei(φ+ωt) − (A(1)

+ e−λ∗+ζ + A(1)
− e−λ−ζ )e−i(φ+ωt)

+ (A(1)
+ e−κ+ζ + A(1)

− e−κ∗−ζ )ei(φ−ωt) − (A(1)
+ e−κ∗+ζ + A(1)

− e−κ−ζ )e−i(φ−ωt)]
(B31b)

u1
0φ = − i

8
[(A(1)

+ e−λ+ζ − A(1)
− e−λ∗−ζ )ei(φ+ωt) + (A(1)

+ e−λ∗+ζ − A(1)
− e−λ−ζ )e−i(φ+ωt)

+ (A(1)
+ e−κ+ζ − A(1)

− e−κ∗−ζ )ei(φ−ωt) + (A(1)
+ e−κ∗+ζ − A(1)

− e−κ−ζ )e−i(φ−ωt)],
(B31c)

where the coordinates (q1, q2, φ) are naturally mapped on the usual spherical coordinates
(r, θ, φ) used here, with A(1)

± = ir(1 ∓ cos θ), and where (B29) can be simplified using
γ± = ±ω/2 and γ1 = cos θ .

Considering now the multipolar tidal-like forcing of a spheroid, V 1
Σ = ε cos(ωt)ẑR × r

can be imposed using Qz = 1, discarding the other possible contributions to V 1
Σ (i.e. Qx =

Qy = Q�
y = Q�

x = Q̃x = 0). Then, (B27) reduces to

u1
0q2

= isq

8
[(e−λ+ζ − e−λ∗−ζ )ei(mφ+ωt) + (e−λ−ζ − e−λ∗+ζ ) e−i(mφ+ωt)

+ (e−κ+ζ − e−κ∗−ζ ) ei(mφ−ωt) + (e−κ−ζ − e−κ∗+ζ ) e−i(mφ−ωt)], (B32a)

u1
0φ = sq

8
[(e−λ+ζ + e−λ∗−ζ ) ei(mφ+ωt) + (e−λ−ζ + e−λ∗+ζ ) e−i(mφ+ωt)

+ (e−κ+ζ + e−κ∗−ζ ) ei(mφ−ωt) + (e−κ−ζ + e−κ∗+ζ ) e−i(mφ−ωt)]. (B32b)

Equation (B32a) can even be further simplified in the two following particular cases of
interest, that are (i) longitudinal librations, where m = 0 and thus λ± = κ∓, and (ii) the
steady tidal-like forcing, where ω = 0 and thus λ± = κ±.
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